Particle Physics

30 January 2012 10:09

20% CA 80% exam

Recommended books:

- 1. The basics
- 2. The forces of Nature

EM Strong Weak

- 3. Quarks, Hadrons & colour
- 4. Experimental methods
- 5. Open Questions

1: The Basics

30 January 2012 10:12

	PH-101	PH-229
Observables	Velocity, forces, momentum, energy	Ditto
Scales	$L{\sim}\theta(1-10^{21})m$	$10^{-12} - 10^{-15}m$
	$M \sim \theta (1 \rightarrow 10^{24} \rightarrow 10^{30} \rightarrow ?) kg$	$10^{-21}(1eV) \to 10^{-25}(proton)kg$
	$V \sim \theta(1) m s^{-1}$	$V \sim c = 3 \times 10^8 m s^{-1}$
Paradigm	Newtonian (aka classical)=human intuition	QM & relativity
Experiments	Human like, billiard balls	Can only use particles themselves to do the interacting & observing. There are no photon sized spanners
How do we study?	Cameras, microscopes, telescopes, spanners	See above: we have to smash particles together to work out what makes them work

2 approaches

"top down"=historical

Long winded

"bottom up" = logical

We start with smallest particles and how everything else can be made from them

NB: Proton has mass of $\sim 1 \text{ GeV}$

Standard model particles

Fermions (=matter particles)

Leptons

Neutrinos	v_e (small mass)	ν_{μ} (small mass)	v_{τ} (small mass)
Charged Leptons	<i>e</i> ⁻ (1/2 MeV)	$\mu^{-} (10^{2} MeV)$	τ^{-} (1.7GeV)

Quantum

+2/3	Up (few MeV)	Charm (~1GeV)	Top (~170 GeV)
-1/3	Down (few MeV)	Strange(~100MeV)	Bottom (~4 GeV)

```
Proton=UUD
Neutron=UDD
Bosons (=Force carriers)
```

Photon γ m=0, q=0(EM) Gauge bosons W^+ (m=80GeV), W^- (m=80GeV), Z^0 (m=90GeV) (Weak) Gluons g (m=, q=0) (strong)

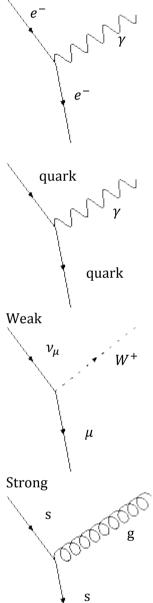
[gravitons] (gravity) Outside particle physics

Higgs (bosons) not yet seen q=0m~12.5GeV

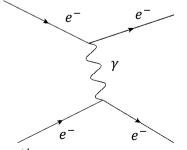
Around 1/3 of all Nobel prizes in the last 50 years have been to do with the above table Interactions

	EM	Weak	Strong	Gravity
Neutrinos		X		X (probably)
Charged leptons	Х	X		Х
Quarks	Х	X	X	Х

1.3 Representing interactions EM



Note there is electric charge conservation i.e. total electric charge=constant $\neq f(t)$



 \rightarrow time So forces are caused by the exchange of bosons (carrier) particles This is the standard model of particle physics Agrees with all observation except

- neutrinos are not massless
- Dark matterDark energy
- (Gravity) (higgs yet to be found)

Natural units

```
06 February 2012
10:14
```

Kh, m, s not convenient for PP Note c & \hbar are relevant constants in eq'ns [c] = units of $c = LT^{-1}$ $[\hbar] = [angular momentum] = [MvR]$ $= ML^2T^{-1} = MV^2TET$ Lets set $c \equiv 1$ (to make eq'ns simpler) $1a \rightarrow L = T$ i.e one length unit=1 time unit (!) Also $\hbar \equiv 1$ $1b \rightarrow ML^2T^{-1} = 1$ But $L = T \Rightarrow ML = 1$ Ie one mass unit=one length unit=one time unit $1c \rightarrow ET = 1$ i.e. one energy unit= $(one \ time \ unit)^{-1}$ =one mass unit Sumary Length unit \equiv time unit Energy unit \equiv mass unit Reciprocals of eachother Mpw just choose one of the few above units and set 8 of the other 3 follow (or are derived from that) Best/convention choice is 1 Energy unit = 1 eV= energy reg'd to move one electron thru 1 volt = $qV = 1.6 \times 10^{-19} * 1V$ $= 1.6 \times 10^{-19} I$ $1eV = 1.6 \times 10^{-19}I$ $KeV = 10^3 eV$ $M_e \sim \frac{1}{2} MeV$ Note setting $c = \hbar = 1$ simplifies eq'n e.g. reletavistic energy-momentum equ'n SI $E^{2} = k^{2}c^{2} + m^{2}c^{4} \rightarrow^{k=0} E = mc^{2} \rightarrow^{c=\hbar=1} E = m$ $\rightarrow^{c=\hbar=1} E^2 = k^2 + m^2 \rightarrow^{k=0} E = m$ Relationship between SI and NU We have $L = T = E^{-1}$ M = ESo a quantity Ω with SO units $[\Omega_{SI}] = M^p L^q T^h$ Has NU $[\Omega_{NII}] = E^p E^{-q} E^{-r} = E^{p-q-r}$ SI _ -Natural units

	51			Natural units
Quantity	$[m] \rightarrow p$	$[L] \rightarrow q$	[<i>T</i>] <i>r</i>	n = p - q - r
Mass	1	0	0	$1[m] = [E], m_{proton} \sim 938 MeV$
Length	0	1	0	-1
Time	0	0	1	-1
$Energy = \frac{1}{2}mv^2$	1	2	-2	1
Momentum	1	1	-1	1
Velocity	0	1	-1	0

Force= ma	1	1	-2	2
Angular mom $= mvr$	1	2	-1	0

How to rewrite SI units into Natural units? *A distance* a = 0.1 fm

 $= 0.1 \times 10^{-15} m$ What is "a" in N.U.> $a_{SI} = 0.1 \times 10^{-15} m$ Write $a_{nu} = a_{si}\hbar^a c^b$ {putting back the $\hbar \& c$ } $[a_{nu}] = [a_{si}][\hbar^a][c^b]$ $= L E^a T^a L^b T^{-b}$ $= E^a L^{b+1} T^{a-b}$ In NU (LHS) $= E^{-1}$ Equate powers $E \Rightarrow -1 = a$ $L \Rightarrow 0 = b + 1 \rightarrow b = -1$ $T \Rightarrow 0 = a + b \rightarrow a = b = -1$ So $a_{nm} = \frac{a_{SI}}{\hbar c}$ Using $\begin{bmatrix} \hbar &= 1 \times 10^{-14} Js \\ = 6.6 \times 10^{-16} eVs \end{bmatrix}$ $a_{nu} = \frac{10^{-16} m}{6.6 \times 10^{-16} \times 3 \times 10^8 m s^{-1}}$ $= \frac{1}{1} = \frac{1}{1}$ $= \frac{1}{20 \times 10^8 eV} = \frac{1}{2GeV}$

How do we rewrite natural units into SI?

Parapositronium is an unstable bound state of e^- and e^+ & has a lifetime of

$$\tau_{nu} = \frac{2}{m\alpha^5}$$

$$m = m_e$$

$$\alpha = \frac{1}{137}$$

$$[\alpha] = 0$$
Dimensionless
What is τ_{si} ?
Sol'n
Write

$$\tau_{si} = \tau_{nu}\hbar^a c^b$$
i.e.

$$\tau_{sl} = \frac{2}{m\alpha^5}\hbar^a c^b$$
So

$$[\tau_{si}] = [m^{-1}][\alpha^{-5}][\hbar^a][c^b]$$

$$[\alpha^{-5}] \text{ dimless}$$

$$= M^{-1} \frac{M^a L^{2a}}{T^a} \frac{L^b}{T^b}$$

$$\frac{M^a L^{2a}}{T^a} \rightarrow \text{haven't used } [\hbar] = ET \text{ here since there's an "M" already}$$
floating around

$$= M^{a-1} L^{2a+b} T^{-a-b}$$

$$= T$$
Equate powers

$$\boxed{M} = a - 1 = 0 \Rightarrow a = 1$$

$$\boxed{L} = 2a + b = 0 \Rightarrow b = -2$$

$$\begin{bmatrix} T & |-a-b=1 & | \rightarrow b = -2 \end{bmatrix}$$
So
 $\tau_{si} = \tau_{nu} \frac{\hbar}{c} = \frac{2\hbar}{m\alpha^5 c^2}$
Check
 $\begin{bmatrix} \frac{2\hbar}{m\alpha^5 c^2} \end{bmatrix} = \frac{ML^2 T^{-1} T^2}{ML^2}$
 $= T$
 $[\hbar] = ET$
 $[c] = LT^{-1}$
 $E_{si} = m_{si}c^2$
 $[k_{si}] = [momentum] = [m_{si}v_{si}] = \left[\frac{mv^2}{v}\right] = \left[\frac{E}{v}\right]$
Trivially
 $t_{si} = t_{nu} \quad \hbar$
 $\uparrow \qquad \uparrow \qquad \uparrow$
 $T = E^{-1} \quad ET$
Also
 $d_{si} = d_{nu} \quad \hbar c$
 $\downarrow \qquad \uparrow \qquad \uparrow$
 $L = E^{-1} \quad ET LT^{-1}$
Also
 $M_{si} = M_{nu} \quad c^{-2}$
 $\uparrow \qquad \uparrow \qquad \uparrow$
 $M = E \quad c^{-2}$
Relativistic 4-momentum
1. Define "p"=p_µ
 $\mu = 0,1,2,3$
 $= (E,\underline{k})$
 $= 4 - vector$
i.e has 4 cmpts
Where
 $\underline{k} = 3$ -momentum and has 3 cmpts
 $E = energy = scalar$

 $\sim\sim$ Will always use the symbol p for the 4- vector (4-momentum) , and k for the 3-vector (3-momentum) $\sim\sim$

Textbook [A.1] (II) Lorentz Transf'n

New frame's measurement of 4-momentum=f(old frame's measurement) i.e. p' = f(p)

$$p' = p'_{\mu} = \begin{pmatrix} E' \\ \underline{k}' \end{pmatrix} = \begin{pmatrix} \gamma & -\beta\gamma \\ 1 \\ -\beta\gamma & \gamma \end{pmatrix} \begin{pmatrix} E \\ \underline{k} \end{pmatrix}$$

$$\uparrow column \ vector = \uparrow \Gamma \qquad \uparrow p_{\mu}$$

For frames moving along z axis relative to each other where

$$\beta = \frac{v}{c}$$
$$\gamma = \frac{1}{\sqrt{1 - \beta^2}}$$

(III) Scalors

Eg

$$p^{2} = p_{\mu}g_{\nu}^{\mu}p^{\nu} = \text{"p.p"}$$

$$= (E, \underline{k})\begin{pmatrix} 1 & & \\ & -1 & \\ & & -1 & \\ & & -1 & \\ & & & -1 \end{pmatrix} \begin{pmatrix} E \\ \underline{k} \end{pmatrix}$$

$$= E^{2} - \underline{k}\underline{k}$$

$$= E^{2} - |\underline{k}|^{2}$$

$$= E^{2} - k^{2}$$

$$= \text{scalar}$$

$$\neq \text{vector}$$
Cf complex numbers
$$z = a + ib$$

$$z^{2} \equiv zz^{*}$$

$$= (a + ib)(a - ib)$$

$$\neq z.z$$

1. Define

$$p_{\mu} = (E, \underline{k})$$

$$4 \text{ cmpts}$$

$$\underline{k} = (k_x, k_y, k_z)$$

$$3 \text{ cmpts}$$

2. Lorentz transf

$$p'_{\mu} = \begin{pmatrix} E' \\ \underline{k}' \end{pmatrix} = \begin{pmatrix} & \end{pmatrix} \begin{pmatrix} E \\ \underline{k} \end{pmatrix}$$
(5)
$$= \begin{pmatrix} & \\ \end{pmatrix} p_{\mu}$$

3. Scalar

$$p^{2} = p_{\mu}g_{\nu}^{\mu}p^{\nu}$$

= $(E \ \underline{k})\begin{pmatrix} 1 & & \\ & -1 & \\ & & -1 \\ & & & -1 \end{pmatrix}\begin{pmatrix} E \\ \underline{k} \end{pmatrix} = (p')^{2}$
(6)

Turns out that if p_{μ} transforms according to eq5 when you change frames then $p^2 = (p')^2$ i.e. a scalar is <u>frame invariant</u>

In the case of 4-momenta

$$p^{2} = E^{2} - k^{2} = \text{frame inver} = m^{2}$$
(7)
Let us call this quantity $m^{2} = \text{const}$

$$E^{2} = k^{2} + m^{2}$$
(n.u.)

$$k = 0 \rightarrow E^{2} = m^{2}$$

$$E = m$$
(n.u.)

$$\rightarrow E = mc^{2}$$

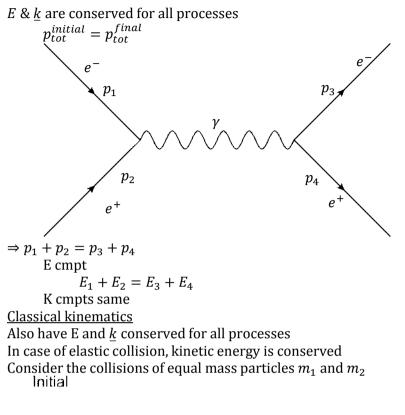
Turns out we will never need to talk about/refer to speed or velocity v. Just need $p_{\mu} \& \underline{k}$

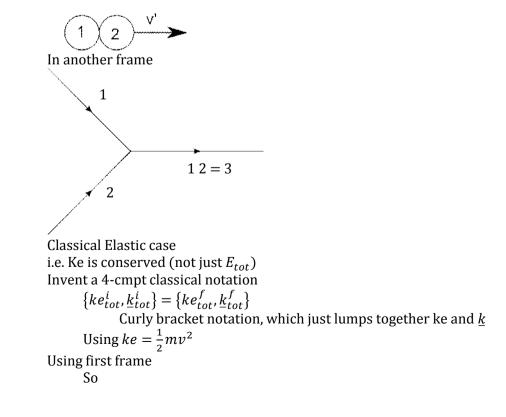
Remember

$$p^{2} = p_{\mu}g_{\nu}^{\mu}p^{\nu} = (E \quad \underline{k})\begin{pmatrix} 1 & & \\ & -1 & \\ & & -1 & \\ & & & -1 \end{pmatrix} \begin{pmatrix} E \\ \underline{k} \end{pmatrix} \equiv E^{2} - |\underline{k}|^{2}$$

Relativistic kinematics

13 February 2012 10:21





 $\left\{\frac{1}{2}mv^2, m\underline{v}\right\} + \left\{0 + \underline{0}\right\}$ $=\left\{\frac{1}{2}2mv'^2, 2m\underline{v}'\right\}$ KE cmpt $\frac{1}{2}mv^2 = mv'^2 \rightarrow v' = \frac{v}{\sqrt{2}}$ K cmpt $m\underline{v} = 2m\underline{v}'$ Modulus $m|\underline{v}| = 2m|\underline{v}'|$ |v| = vSo $v = 2v' \rightarrow v' = \frac{v}{2}$ Inconsistent How can this be? Must be that one (or more) of our initial assumptions is incorrect $\Rightarrow ke_{tot}^{i} = ke_{tot}^{f}$ Cannot be true for this collision i.e. if that collision happens, it is NOT elastic \Rightarrow billiard balls (which are ~ elastic) won't do that

But plasticine balls will (since ke is not conserved in this case) In inelastic collision, we have <u>total</u> energy conserved so some of the initial KE is transformed into another sort of energy (heat etc)

Relativistic Collision

Same collision

$$1$$
 k
 2
rest
 k'
 $3=1+2$

4-mom conservation

$$p_{tot}^i = p_{tot}^J$$

i.e. i.e.

 $\begin{pmatrix} E_{tot}^{i}, \underline{k}_{tot}^{i} \end{pmatrix} = \begin{pmatrix} E_{tot}^{f}, \underline{k}_{tot}^{f} \end{pmatrix}$ $(K_{1}, \underline{k}) + (m, \underline{0}) = (E_{3}, \underline{k}')$

Can only consider one spatial dimension, since

 $\underline{k} = (k, 0, 0) & \underline{k}' = (k', 0, 0)$ (both are only in x direction by conservation of momentum $[\underline{k} + \underline{0} = \underline{k}'])$

We have

$$(E_{1}, k) + (m, 0) = (E_{3}, k')$$

$$E^{2} = m^{2} + k^{2}$$

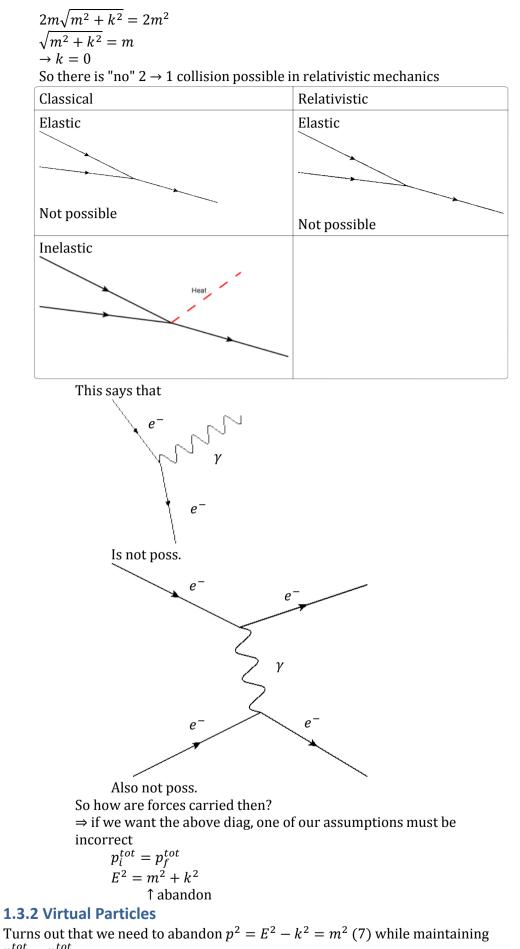
$$\left(\sqrt{m^{2} + k^{2}}, k\right) + (m, 0) = \left(\sqrt{4m^{2} + k'^{2}}, k'\right)$$
Equate components

$$E: \sqrt{m^{2} + k^{2}} + m = \sqrt{4m^{2} + k'^{2}}$$

$$k: k + 0 = k'$$

$$\frac{k = k'}{\sqrt{m^{2} + k^{2}}} + m = \sqrt{4m^{2} + k^{2}}$$
Square both sides

$$m^{2} + k^{2} + 2m\sqrt{m^{2} + k^{2}} + m^{2} = 4m^{2} + k^{2}$$



 $p_i^{tot} = p_f^{tot}$

Particles <u>not</u> obeying (7) are called <u>virtual</u> particles Virtual particles "borrow" Energy from vacuum for time Δt via Heisenberg uncertainty principle

 $\Delta E \Delta t \geq \hbar = 1 \; (n. \, u.)$

Real
$$p^2 = m^2$$

Virtual particles can only occur inside Feynman diags.
Never in external legs
 \Rightarrow can never be detected
How do we calculate virtual particle contributions?
Need to sum over all possible (E, k) values- i.e. it's QM!
In PH-229, we only calculate particles on external legs
1.4.2 Range of Forces 1
Now consider case of virtual particle (massive)
To create this particle, require $\Delta E \sim m$ energy
 $(since E = mc^2 = m \ln n.u. \text{ for } \underline{k} = 0)$
 $E^2 = m^2 + k^2$
This can be done for time Δt where $\Delta E \Delta t \ge \hbar = 1$
So $\Delta t \sim \frac{1}{\Delta E} = \frac{1}{m} (n.u)$
How far can this particle go?
Using $d = v\Delta t \& v = c = 1$
 $\rightarrow Range = R_{nu} \sim \frac{1}{m_{nu}}$
Convert to S.I.
 $R_{nu} = 1/m_{nu}$
 $R_{si} = \frac{h^{A}c^{A}}{m_{si}c^{2}}$
 $[R_{si}] = \frac{[h^{C}|[b^{B}]]}{[m_{si}c^{2}]}$
 $L = \frac{B^{T}a[B^{T}-b]}{E}$
 $a = 1, b = 1$
 $\Rightarrow L = L$
 $R_{si} = hc/m_{si}c^{2}$
 $= \frac{h}{m_{si}c}$
 $\overline{N_{si}} = hc/m_{si}c^{2}$
 $= \frac{h}{m_{si}c}$
 $\overline{N_{si}} = hc/m_{si}c^{2}$
 $Z \ge x10^{-10}m$
 $1MeV = 2 \times 10^{-10}m$
 $1MeV = 2 \times 10^{-18}m$
Recap
 $E^{2} = m^{2} + k^{2}$
 $\Rightarrow E = \pm \sqrt{\Box}$
 \Rightarrow Antiparticles

Real

	Obeys $E^2 = m^2 + k^2$	$E^2 \neq m^2 + k^2$
Particle e ⁻ , p ⁺ "Usual" charge	Can occur as initial & final states Forward arrows in Feynman diagrams	Can't occur as I or f Forward arrow
Antiparticle Eg e^+ , p^- Opp charge \equiv missing -ve energy state \equiv +ve energy state opp charge	Can occur as I & f states Backward arrow	Can't occur as I or f Backward arrow

1.4.2 Range of Forces II

23 February 2012 12:08

Recall uncertainty principle $\rightarrow R \sim \frac{\hbar}{mc}$ Can now derive this properly from klein-gordon eq'n (10)[si] $-\hbar^2 \frac{\delta^2 \phi}{\delta t^2} = -\hbar c^2 \nabla^2 \phi + m^2 c^4 \phi$ Solve in static case, *i. e.* $\frac{\delta \phi}{\delta t} = 0$ $\rightarrow \nabla^2 \phi = \frac{m^2 c^2}{\hbar^2} \phi$ For radially symmetric case $\nabla^2 \phi = \frac{1}{r^2} \frac{\delta}{\delta r} \left(r^2 \frac{\delta}{\delta r} \right) \phi(r)$ $ie\frac{\delta\phi}{\delta\theta} = \frac{\delta\phi}{\delta''\phi''} = 4$ Ie $\begin{aligned} \phi &= f(r) \neq f(\theta, "\phi") \\ \rightarrow \frac{1}{r^2} \frac{\delta}{\delta r} \left(r^2 \frac{\delta}{\delta r} \right) \phi(r) = \frac{m^2 c^2}{\hbar^2} \phi(r) \\ &\equiv \beta^2 \phi(r) \end{aligned}$ Where $\beta = \frac{\binom{n}{mc}}{\frac{n}{\hbar}}$ Solve by change of variable $\phi = \frac{\chi}{r}$ $\frac{\delta \phi}{\delta r} = \frac{\chi'}{r} - \frac{\chi}{r^2}$ Where $\chi' = \frac{\delta}{\delta r} \chi$ $\frac{\delta}{\delta r} \left(r^2 \frac{\delta}{\delta r} \right) \phi = \frac{\delta}{\delta r} (r\chi' - \chi)$ $= r\chi'' + \chi' - \chi' = r\chi''$ $(*) \rightarrow \frac{1}{r} \frac{d^2 \chi}{dr^2} = \beta^2 \frac{\chi}{r}$ $\frac{d^2\chi}{dr^2} = \beta^2\chi$ $\frac{d^2y}{dx^2} = 2$ $\frac{dy}{dx} = 2x + C$ $y = x^2 + Cx + D$ 2y = 4y = 2Solution $\chi(r) = Ae^{-\beta r} + Be^{+\beta r}$ But $\chi = \infty at r = \infty$ ⇒ must have B=0 So $\chi(r) = Ae^{-\beta r}$ $(**) \to \phi(r) = \frac{A}{r} e^{-\beta r}$

$$e^{\frac{r}{R}}$$
(11)
Where

$$R = range = \frac{1}{\beta} = \frac{h}{mc} \equiv (8)$$

$$\frac{10}{0}$$

Know
$$W_f^2 = W_i^2$$

 $(*) \rightarrow m_c^2 = m_A^2 + m_B^2 + 2m_B E_A^{min}$
 $\rightarrow E_A^{min} = \frac{m_c^2 - m_A^2 - m_B^2}{2m_B}$
Suppose $m_c \gg m_{A,B}$
So
 $E_A^{min} \sim \frac{m_c^2}{2m_B}$
 $i.e. m_c \sim \sqrt{2m_B E_A^{min}}$

(15)

Case 2: Colliding beams

$$(A) \xrightarrow{P_A} (B)$$

 $\underline{k}_{A} \neq \underline{0} \& \underline{k}_{B} \neq \underline{0}$ Again we want to create particle c with at least an energy $E_{A,B}$ as possible. This is done (as above) by creating c at rest, i.e. $\underline{k}_{c} = \underline{0}$ (7) $\rightarrow E_{c} = m_{c}$ (14) $\rightarrow W_{-}$

Problem Sheet 1

27 February 2012 10:12

A)

B)

Q1

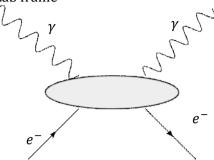
$$R_{SI} = \frac{\hbar}{m_{SI}c}$$
$$\hbar = c = 1$$
$$R_{nu} = \frac{1}{m_{nu}}$$

Want $R_{SI} = f(m_{nu})$ $m_{SI} = m_{nu}\hbar^a c^b$ $[m_{SI}] = [m_{nu}][\hbar^a c^b]$

Compton Scattering

29 February 2012 12:08

Arthur Compton, Washington Univ, St Louis, Nobel 1927 Consider photon interacting with e^- Lab frame



move to more convenient frame where initial e^- is at rest

 $\gamma + e^- \rightarrow \gamma + e^-$ 4 mom conservation $p_{\nu} + p_e = p_{\nu}' + p_e$ 4 cmpt vector eqn Ie $\begin{pmatrix} E_{\gamma}, \underline{k}_{\gamma} \end{pmatrix} + (E_{e}, \underline{0}) = \begin{pmatrix} E_{\gamma}', \underline{k}_{\gamma} \end{pmatrix} + (E_{e}', \underline{k}_{e}')$ $E^{2} = k^{2} + m^{2}$ $\left(k_{\gamma},\underline{k}_{\gamma}\right) + \left(m_{e},\underline{0}\right) = \left(k_{\gamma}',\underline{k}_{\gamma}\right) + \left(\sqrt{m_{e}^{2} + k_{e}'^{2}},\underline{k}_{e}'\right)$ Note k = 3 cmpt VECTOR k = |k| = real numberE cmpt $k_\gamma + m_e = k_\gamma' + \sqrt{m_e^2 + k_e'^2}$ $\int \frac{\mathrm{Sq}}{\sqrt{k_{\gamma}-k_{\gamma}'+m_e}} = m_e^2 + k_e'^2$ $\dot{k_{\gamma}^{2}} + k_{\gamma}^{\prime 2} + m_{e}^{2} + 2m_{e}(k_{\gamma} - k_{\gamma}^{\prime}) - 2k_{\gamma}k_{\gamma}^{\prime} = m_{e}^{2} + k_{e}^{\prime 2}$ $k_{\gamma}^{2} + k_{\gamma}^{\prime 2} + 2m_{e}(k_{\gamma} - k_{\gamma}^{\prime}) - 2k_{\gamma}k_{\gamma}^{\prime} = k_{e}^{\prime 2}$ k cmpt $\underline{k}_{\gamma} = \underline{k}_{\gamma}' + \underline{k}_{e}'$ 3 cmpt equation $\rightarrow \underline{k}_{\gamma} - \underline{k}_{\gamma}' = \underline{k}_{e}'$ Self dot product $(\underline{k}_{\gamma} - \underline{k}_{\gamma}') * (\underline{k}_{\gamma} - \underline{k}_{\gamma}') = \underline{k}_{e}' * \underline{k}_{e}'$ $\frac{k_{\gamma}}{k_{\gamma}^{2}} + \frac{k_{\gamma}}{k_{\gamma}^{2}} + \frac{k_{\gamma}}{k_{\gamma}^{2}} + \frac{k_{\gamma}}{k_{\gamma}^{2}} - \frac{2k_{\gamma}}{k_{\gamma}^{2}} \frac{k_{\gamma}}{k_{e}^{2}} = k_{e}^{\prime 2}$ (**) Equate LHS of (*) and (*) $2m_e(k_{\gamma}-k_{\gamma}')-2k_{\gamma}k_{\gamma}'=-2k_{\gamma}k_{\gamma}'\cos\theta$ $m_e(k_{\gamma} - k_{\gamma}') = k_{\gamma}k_{\gamma}'(1 - \cos\theta)$ $\frac{k_{\gamma} - k_{\gamma}'}{k_{\gamma} k_{\gamma}'} = \frac{1}{m_e} (1 - \cos \theta)$ $\frac{1}{k_{\gamma}'} - \frac{1}{k_{\gamma}} = \frac{1}{m_e} (1 - \cos \theta)$ But for photons

$$E_{\gamma} = k_{\gamma} = \hbar\omega$$

$$= \omega$$

(in NU)
So

$$\frac{1}{\omega'} - \frac{1}{\omega} = \frac{1}{m_e} (1 - \cos \theta)$$

Convert to SI using

$$\omega = 2\pi f$$

$$c = f\lambda$$

$$\hbar = \frac{h}{2\pi}$$

$$\rightarrow \lambda' - \lambda = \frac{h}{m_e c} (1 - \cos \theta)$$

$$\neq f(\lambda)$$

$$= f(\theta \text{ only})$$

Confirms particle nature of light
i.e.
max $\Delta \lambda = \lambda' - \lambda$
Occur at $\theta = \pi$ i.e. backscattering
But double slit says light is waves

$$\Rightarrow$$
 wave particle duality

Another example

A 10GeV e^- scatters with a p at rest. What is the momentum of the scattered p assuming all outgoing & incoming mom are linear e^- mass insignificant compared to energy/momentum

$$E_e^2 = (10 GeV)^2 e^{\mp p^+} \rightarrow e^- + p^+$$

$$(10 GeV, 1\underline{0} GeV) + (M_p, \underline{0})$$

$$= \left(\sqrt{M_e^2 + k_e^2}, \underline{k}_e\right) + \left(\sqrt{m_p^2 + k_p^2}, \underline{k}_p\right)$$
But event hing is colored

But everything is colinear. Let x axis be aligned with \underline{k}

$$(10,10) + (M_p, 0) = \left(\sqrt{M_e^2 + k_e^2}, k_e\right) + \left(\sqrt{M_p^2 + k_p^2}, k_p\right)$$

E cmpt

$$10 + M_p = \sqrt{M_e^2 + k_e^2} + \sqrt{M_p^2 + k_p^2}$$

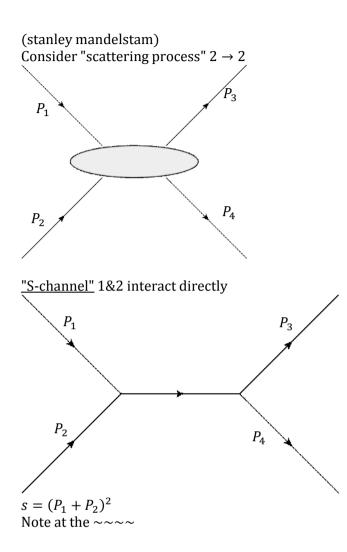
K cmpt

$$10 = k_e + k_p \to k_e = 10 - k_p$$

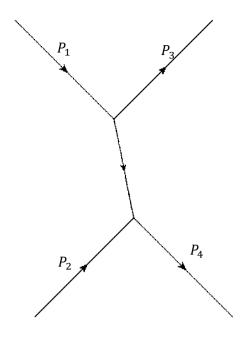
10 + M_p = $\sqrt{M_e^2 + (10 - k_p)^2} + \sqrt{M_p^2 + k_p^2}$
Solve

Mandelstam variables

05 March 2012 10:09



<u>"T-channel"</u> 1&3 interact directly



<u>"U-channel"</u> 1&4 interact

2 The Forces of Nature

05 March 2012 10:18

Recall: Fermions $Q = +\frac{2}{3} {\binom{u}{d} \binom{c}{s} \binom{t}{b}} Quarks$ $Q = -\frac{1}{3} {\binom{e}{v_e}} {\binom{\mu}{v_\mu}} {\binom{\tau}{v_\tau}} leptons$ Bosons γ photon-EM g gluon-Strong W^{\pm}, Z^0 gauge bosons- Weak (H Higgs) Strength of Forces Expt shows typical lifetimes of particles which decay via these 3 forces/interactions

Interaction	Typical Lifetimes $ au$
Strong	$10^{-23} s$ ~time taken for light to cross a proton
EM	$10^{-16} \to 10^{-21} s$
Weak	$10^{-7} \to 10^{-13} s$

There are exceptions: e.g. neutron

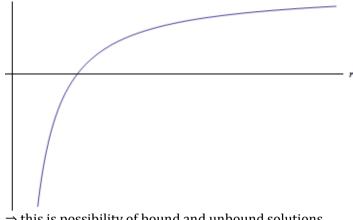
 $\begin{array}{l} n \rightarrow p + e^- + \bar{\nu}_e \\ t {\sim} 10^3 s \end{array}$

Since $\tau = \text{lifetime} \propto \frac{1}{\text{Interaction Strength}}$ \Rightarrow we can get an idea of the strength from τ

EM interactions

 γ couples with/interacts with any particle with non-zero electric charge It does <u>not</u> change the particle species ⇒it does not change the electric charge ⇒Q is conserved quantity EM interactions are responsible for all atomic & molecular physics, aka chemistry Recall the Range of forces II, Klein-Gordon eq'n was solved $(11) \rightarrow \phi(r) \sim \frac{1}{r} e^{-\beta r}$

(11) $\Rightarrow \phi(r) \sim \frac{1}{r}e^{-r}$ Where $\beta = \frac{mc}{\hbar}$ But for photons, $m_{\gamma} = 0$ So $\beta = 0$ $\phi(r) \sim \frac{1}{r}$ i.e. usual electrostatic potential



 \Rightarrow this is possibility of bound <u>and</u> unbound solutions

e.g.

H atom, e^- is bound

 H^+ ion, e^- is unbound

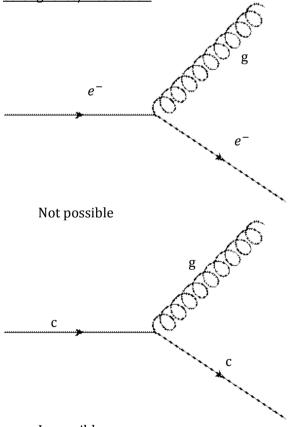
Since there are two types of electric charge, +ve and -ve, the el. Charge can be represented on a (single) number line

Strength of EM interactions ${\sim}e^2$ In detail ~2

$$\alpha \equiv \frac{e^2}{4\pi\hbar c\epsilon_0}$$

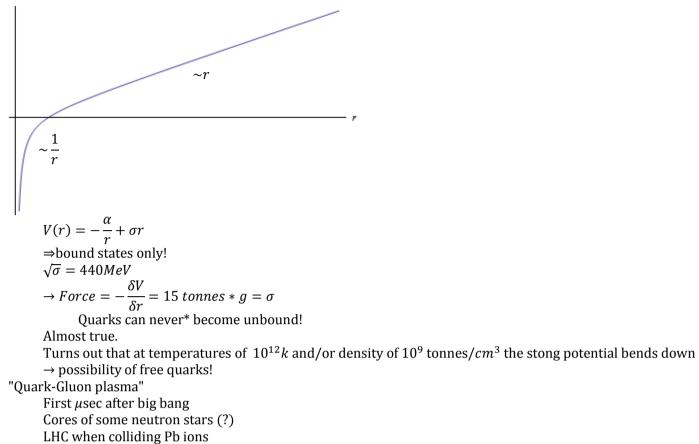
$$= \frac{1}{137.035999070(98)}$$
=Fine structure constant
10 Sig figs!

Strong force/interaction

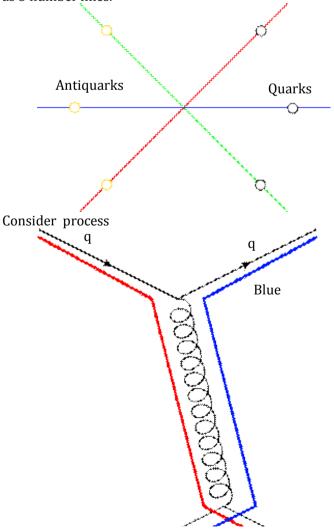


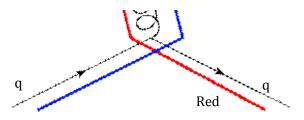
Is possible It does not change particle species, but it does change colour charge of the quark Why? G carry colour charge

<u>Rule 1:</u> g interact with anything with colour charge <u>Rule 2:</u> Colour charge is conserved



The quantity corresponding to electric charge in the strong interaction is "colour charge". This can be represented as 3 number lines.





i.e the gluon in this case is blue-antired

 \Rightarrow gluons contain colour

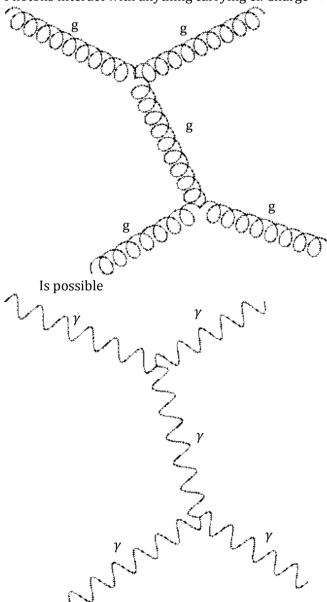
How many colour combinations can gluons have

 $\Rightarrow 3 * 2 = 6$

Turns out there are also 2 "diagonal" combinations \rightarrow 8 in total Contrast this with EM case. Photons do NOT carry el. Charge!

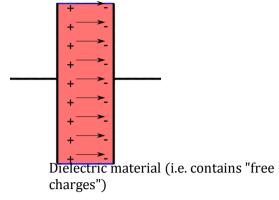
Note: gluons interact with any particle which carries colour \Rightarrow Gluons self-interact

Photons interact with anything carrying el. Charge \Rightarrow Photons do NOT self-interact



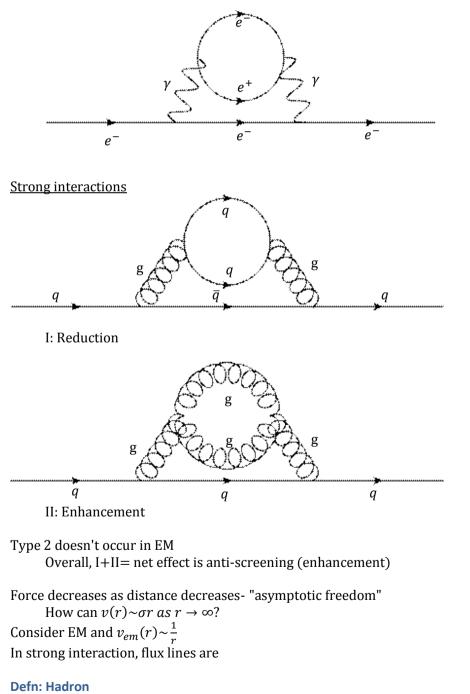
Not possible

7.1.2 Vacuum polarisation Recall Dielectric effect (capacitor in dielectric material



 \rightarrow reduction in effective charge on each plate \exists analogous effect in EM

Reduction in effective charge of the incoming e^- due to e^+ "popping out of the vac"



Any bound state of quarks (or antiquarks) Turns out there are 2 ways of doing this to form colourless states

1. Baryons

qqq (3 quarks)e.g. p = uud, n = udd $\Lambda^+ = suu$ 2. Mesons $q\overline{q} (\text{quark} + \text{antiquark})$ e.g. $\pi = u\overline{u} + d\overline{d}$ $k^+ = \overline{s}u$

2.2.2 Quantum numbers

08 March 2012 12:30

$\binom{u}{d}\binom{c}{s}\binom{t}{b}$

Since the strong interaction doesn't change quark species

→ conserved quantum number = N_u , N_d , N_c , N_s , N_t , N_b Where N_u = number of u quarks – number of \bar{u} quarks etc

For historic reasons, N_u , N_d are not often used, but 2 other quantities take their place Defn: El. Charge

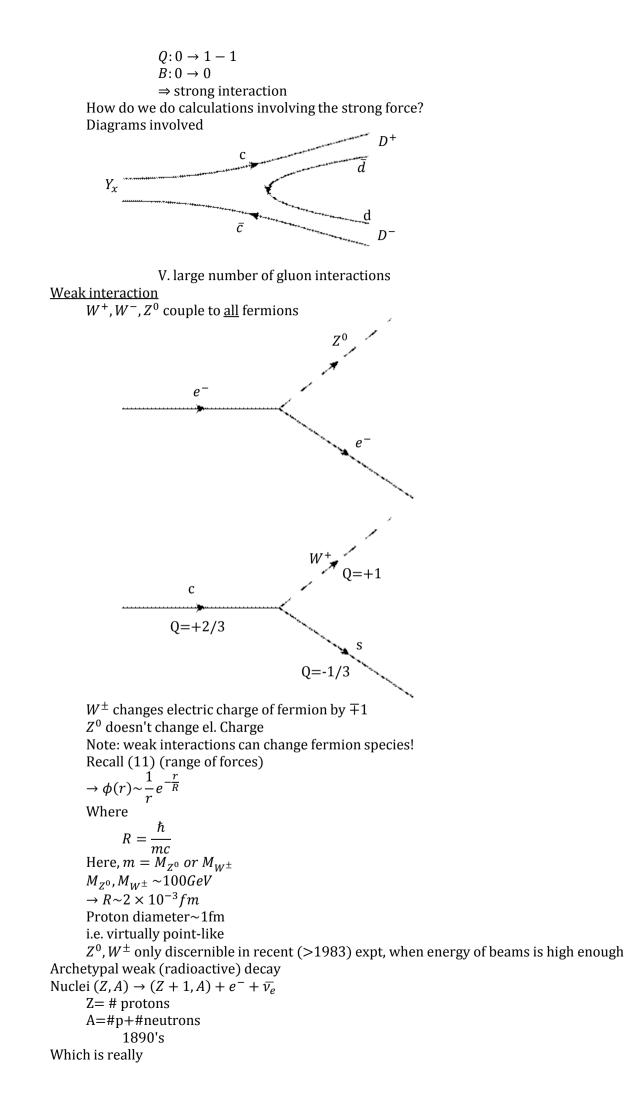
$$= Q = \frac{2}{3} (N_u + N_c + N_t) - \frac{1}{3} (N_d + N_s + N_b)$$
(18)
Defn: Baryon number

$$= B = \frac{1}{3} (N_u + N_d + N_c + N_s + N_t + N_b)$$
(19)

$$= \text{counts \# of baryons}$$
Proton, B=1
Meson, B=0
For completeness, historically, the following terms are used
"strangeness"= $S = -N_s$
"charmness"= $C = +N_c$
"bottomness"= $\tilde{B} = -N_b$
"Topness"= $T = +N_t$

Above quantum numbers can be used to categorise interactions. Recall strong interaction <u>conserves</u> $N_{u,d,...,t,b}$

```
d \to u + \nu_e
         Breaks Q: -\frac{1}{3} \rightarrow +\frac{2}{3}
         Breaks N_{u,d}
\Rightarrow can't be strong!
K^+ \rightarrow \pi^0 + \mu^+ + \nu_\mu
i.e.
         u\bar{s} \to u\bar{u} + \cdots
N_{\nu} 1 \rightarrow 1 - 1 + 0
         Broken
N_d \ 0 \rightarrow 0
         0k
N_s - 1 \rightarrow 0
         Broken
Q + 1 \rightarrow 0 + 1 + 0
         0k
K^0 \rightarrow K^+ + \pi^-
d\bar{s} \rightarrow u\bar{s} + \bar{u}d
i.e. meson contains q_1 \overline{q}_2
         K=kaon contains either an s or \bar{s} and a light quark/antiquark i.e. u, \bar{u}, d, \bar{d}
                   N_{II}: 0 \rightarrow 1 - 1
                            Yes
                   N_d \ 1 \rightarrow 1
                          Yes
                  N_s - 1 \rightarrow -1
                            Yes
```



Nucleon (aka, protons & neutrons) $n \rightarrow p + e^- + \bar{v}_e$

Which is really

Quarks. $d \rightarrow u + e^- + \bar{\nu}_e$ Which Which is really Fundamental W^{\pm}, Z^0 $d \rightarrow u + W^- \rightarrow u + e^- + \bar{\nu}_e$

Interesting facts about neutrinos A ν can travel through 6 trillion tonnes of Pb w/o interacting Big Bang produced lots of ν . On average, the universe filled with 339 of these ν per cm^3 $2 \times 10^{21} \nu$ pass through your body in your lifetime Chances of these interacting with you is 1 in 4

2.1 Lepton Quantum Numbers

14 March 2012 12:02

Recall $N_q = \# q - \# \bar{q}$ Analogous, but generalised quantity for leptons $L_e = \# e^- - \# e^+ + \# v_e - \# \bar{v}_e$ Similar for $L_\mu \& L_\tau$ So $L_e = "N_e" - "N_{v_e}"$ In earlier notation e.g. for $e^-: L_e = +1$

 $\bar{v}_{\mu}: L_e = 0; L_{\mu} = -1$

The (minimal) standard model of particle physics (i.e. EM +Weak+Strong with all neutrinos massless) says $L_e \& L_\mu \& L_\tau$ are separately conserved

Note, since expt shows that $M_{\nu} \neq 0, L_{e,\mu,\tau}$ are actually not exactly conserved (!) Pictorially,

$$\binom{e^{-}}{\nu_{e}}\binom{\mu^{-}}{\nu_{\mu}}\binom{\tau^{-}}{\nu_{\tau}}$$

Weak interactions only allowed vertically

8.2.1

e.g.
$$\mu^- \rightarrow e^- + \nu_{\mu} + \bar{\nu}_e$$

 $L_e; 0 \rightarrow 1 + 0 - 1$
Ok
 $L_{\mu}; 1 \rightarrow 0 + 1 + 0$
Ok
e.g. $\nu_{\mu} \rightarrow e^- + \tau^- + \bar{\nu}_{\tau}$
 $L_e; 0 \rightarrow 1 + 0 + 0$
No
 $L_{\mu}; 1 \rightarrow 0 + 0 + 0$
No
 $L_{\tau}; 0 \rightarrow 0 + 1 - 1$
No

Forbidden in (min) standard model 8.2.3 <u>Weak interaction of Quarks</u> None of $N_{u,d,c,...}$ are conserved individually Pictorially

 $\binom{u}{d}\binom{c}{s}\binom{t}{b}$

Vertical and diagonal W^+ allowed, but not horizontal

Cabibbo Angle (1963)

2 generations only

We've seen weak interactions of leptons occur only "vertically", but weak interactions of quarks occur both vertically & diagonally. To make sense of this introduces a "change of variables" $\rightarrow d' \& s'$ Def'n

$$d' = d \cos \theta_c + s \sin \theta_c$$

$$s' = -d \sin \theta_c + s \cos \theta_c$$

(20)

$$\binom{d'}{s'} = \binom{R_{\theta}}{s} \binom{d}{s}$$

"weak basis"=Roth Max thru θ * Orig "mass" basis

 $\theta_c = \text{cabibbo angle} \approx 13^{\circ}$

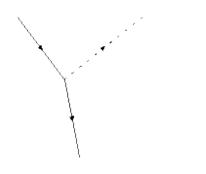
In the new, rotated basis, weak interactions occur only vertically, i.e.

$$\binom{u}{d'}\binom{c}{s'}$$

Analogous to leptons, only vertical allowed "quark-lepton" symmetry

Using $(20) \rightarrow$

 $\binom{u}{d\cos\theta_c + s\sin\theta_c} \binom{c}{-d\sin\theta_c + s\cos\theta_c}$ Note $\cos \theta_c = 0.97 \approx 1$ $\sin \theta_c = 0.27 \approx 0$ $u \rightarrow d$ much more likely than $u \rightarrow s$ So transition $u \rightarrow d + W^+$ Has a factor $\cos \theta_c$; "Cabibbo Allowed" $u \rightarrow s + W^+$ Has a factor of $\sin \theta_c$; "Cabibbo Suppressed" The above interactions change the charge of the quark, so they emit a W^{\pm} \rightarrow called "charged currents" Those that emit a Z^0 do <u>not</u> change quark's charge \rightarrow called neutral currents e.g. $u \rightarrow u + Z^0$ Q: is $c \rightarrow u + Z^0$ possible? i.e. flavour changing neutral currents Can study this as follows $d' \rightarrow d' + Z^0$ $d' = d\cos\theta_{\rm E} + s\sin\theta_c$ Z^0 $d' = d\cos\theta_c + s\sin\theta_c$ Can break this up into 4 diagrams d Z^0 Z^0 Z^0



Elastic *e*⁻+p scattering

26 March 2012 10:07

$$e^- + p \rightarrow e^- + p$$

$$\frac{ds}{d\Omega} = \left(\frac{ds}{d\Omega}\right)_R G_E(q^2)$$
(23)

If p recoils, (23) generalises to $\left(\frac{ds}{d\Omega}\right) = (\dots)G_E(Q^2) + (\dots)G_M(Q^2)$ (24) (...)=some factor Where $Q^{2} = (k - k')^{2} - (E - E')^{2}$ (25) $= -(4 - mom)^2$ transferred from e^- to p $e(E',\underline{k}')$ $e(E,\underline{k})$ $\gamma(E-E',\underline{k}-\underline{k}')$ р Expt ds $d\Omega$ Measured Recall $G_E(Q^2) = F.T.of p(r)$ (charge distribution) Since $G_E(Q^2) \neq const$ Therefore proton is not pt-like $(i. e. p(r) \neq \delta f'n)$ so proton has some structure!! What's it made of?

7.4 Deep Inelastic Scattering

26 March 2012 10:19

See fig A. This is clearly inelastic since $x \neq proton$ $E_{\nu} \approx 10 GeV$ $\gg M_p \approx 1 GeV$ γ 's wavelength \ll size of proton Recall Q' =Lorentz scalar $= (k - k')^2 - (E - E')^2$ Def'n v: $2 m_{\nu} = W_{\chi}^2 + Q^2 - M^2$ (26)Where $M = M_p$ $W_x^2 = (\text{Invariant mass})^2$ $\rightarrow \nu = E - E'$ (not proven) Def'n x=Bjorken variable Q^2 $2M_{\nu}$ (27) \rightarrow x=fraction of p's momentum carried by struck quark (Proven in sheet 3) Note for inelastic scattering $W_{x} = f(E' \& \theta)$ But for elastic scattering $W_x = M_p^2$ Elastic cross section (24) generalises to dσ $\frac{uo}{dE'd\Omega} = (\dots)F_1(x,Q^2) + (\dots)F_2(x,Q^2)$ $F_{1,2} =$ "structure function" Inelastic generalisation of form factors Expt. 1969 SLAC $\rightarrow F_{1,2}(x,Q^2) = f(x \text{ only})$ For $O^2 \gg M$ "Bjorken Scaling" Since $F_{1,2}(Q^2) \approx const$, it's F.T. (\approx charge distribution) is a δ function \Rightarrow thing being probed/hit is a point-like particle i.e. quark is fundamental! Further studies show that $F_1 \& F_2$ from experiment are consistent with spin1/2 (fermions), el. Charge $\pm \frac{1}{3}$, $\pm \frac{2}{3}$ i.e. quarks Summary Elastic $e^- + p \rightarrow e^- + p$ Low energy $\leq \sim 5 GeV$ $G_E(Q^2) \neq constant \therefore fourier transfrom \neq \delta \therefore$ thing being probed (proton) is not point like Inelastic $e^- + p \rightarrow e^- + hadrons(x)$ High energy $5 \rightarrow 20 \; GeV$ $F_2(Q^2) = const \therefore F.T. = \delta$ i.e. thing being probed (quark) is point like

Practice problem sheet 2

27 March 2012 11:07

1. $V(r) \sim \sigma r$ at large r, So $F(r) = -\frac{\delta V}{\delta r} = [E][L^{-1}] = -\sigma$ $|F| = \sigma$ $F_{SI} = F_{NII}\hbar^a c^n$ $[F_{SI}] = [F_{NII}][\hbar^a][c^b]$ $EL^{-1} = E^2 E^a T^a L^b T^{-b}$ $E: 1 = 2 + a \rightarrow a = -1$ $L:-1 = b \rightarrow b = -1$ T: 0 = a - b $F_{SI} = \frac{\sigma}{\hbar c}$ $=\frac{440^2 MeV^2}{6.6 \times 10^{-16} eVs \ 3 \times 10^8 ms^{-1}} = \frac{440^2 (10^6)^2 eV^2}{20 \times 10^{-8} eVm} - (\Box) \frac{eV}{m}$ $= (\Box) 1.6 \times 10^{-19} \frac{J}{m}$ $= 16 \times 10^4 N$ $= mg \rightarrow m = 1.6 \times 10^3 kg = 16 tonnes$ 2. $E^2 = m^2 + k^2$ $\gamma + x_{(rest)} \rightarrow x + x$ $(k,\underline{k}) + (M,\underline{0}) = (E_1,\underline{k}_1) + (E_2 + \underline{k}_2)$ (*) $M = M_{\gamma}$ $k_1 = k_2 = k_x$ $(^{*}) \rightarrow (k, \underline{k}) + (M, \underline{0}) = 2\left(\sqrt{M^{2} + k_{x}^{2}}, \underline{k}_{x}\right)$ $\underline{k} \ cmpt \ \underline{k} = 2\underline{k}_x$ $E \ cmpt \ k + M = 2 \sqrt{M^2 + \left(\frac{k}{2}\right)^2}$ $Sq:k^{2} + 2kM + M^{2} = 4\left(M^{2} + \frac{k^{2}}{4}\right) = 4M^{2} + k^{2}$ $2kM = 3M^2$ $k = \frac{3M}{2} = k_{min}$ 3. $p^2 = E^2 - \vec{k}^2 = m^2$ $s = (p_1 + p_2)^2 = p_1^2 + p_2^2 + 2p_1 \cdot p_2 = m_1^2 + m_2^2 + 2p_1 \cdot p_2$ $t = (p_1 - p_3)^2 = p_1^2 + p_3^2 - 2p_1 \cdot p_3 = m_1^2 + m_3^2 - 2p_1 \cdot p_3$ $u = (p_1 - p_4)^2 = p_1^2 + p_4^2 - 2p_1 \cdot p_4 = m_1^2 + m_4^2 - 2p_1 \cdot p_4$ $s + t + u = m_1^2 + m_2^2 + m_3^2 + m_4^2 + 2m_1^2 + 2(p_1 \cdot p_2 - p_1 \cdot p_3 - p_1 \cdot p_4)$ $p_1. p_3 = (E_1, \underline{k}_1). (E_3, \underline{k}_3)$ $= E_1 E_3 - \underline{k}_1 . \underline{k}_3$ $= |k_1||k_3|\cos\theta$ $= k_1^{\bar{x}} k_3^{\bar{x}} + k_1^{\bar{y}} k_3^{\bar{y}} + k_1^{\bar{z}} k_3^{\bar{z}}$ $2m_1^2 = 2p_1^2$ $= (\square) + 2p_1^2 + 2p_1 \cdot (p_2 - p_3 - p_4)$ $= (\Box) + 2p_1 \cdot (p_1 + p_2 - p_3 - p - 4)_{(=0)}$ $= m_1^2 + m_2^2 + m_3^2 + m_4^2$ 4. Conservation of Q numbers i. $\pi^- + p \to \pi^- + \pi^+ + n$ $d\bar{u} + uud \rightarrow d\bar{u} + du + udd$ $N_u = -1 + 2 \rightarrow -1 + 1 + 1$

yes $N_d = 1 + 1 \rightarrow 1 - 1 + 2$ yes $EM yes \rightarrow no$ Strong yes \rightarrow yes ii. $\gamma + p \rightarrow \pi^+ + n$ $\gamma + uud \rightarrow u\bar{d} + udd$ $N_u = 2 \rightarrow 1 + 1$ Yes $N_d = 1 \rightarrow -1 + 2$ Strong or EM But there's a $\gamma \rightarrow \operatorname{can't}$ be strong $\Rightarrow EM$ iii. $\nu_{\mu} + n \rightarrow \mu^- + p$ $\nu_{\mu} + udd \rightarrow \mu^{-} + uud$ $N_u = 1 \rightarrow 2$ No $N_d = 2 \rightarrow 1$ No $L_{\mu} = 1 \rightarrow 1$ Yes ⇒weak iv. $\pi^0 \to e^- + e^+ + e^- + e^+$ $u\bar{u} \rightarrow 2e^- + 2e^+$ $N_{II} = 0 \rightarrow 0$ $L_e = 0 \rightarrow 2 - 2$ Involves leptons so can't be strong $\Rightarrow EM$ v. $p + \bar{p} \to \pi^+ + \pi^- + \pi^0$ $uud + \bar{u}\bar{u}\bar{d} \rightarrow u\bar{d} + \bar{u}d + u\bar{u}$ $N_u = 2 - 2 \rightarrow 1 - 1 + 0$ $N_d=1-1\to -1+1$ \Rightarrow strong vi. $u \rightarrow d + W^+$ Weak vii. $c \rightarrow c + \gamma$ $Q: +\frac{2}{3} \to +\frac{2}{3}$ Involves $\gamma \Rightarrow EM$

Summary

23 April 2012 10:03

- 1. The basics
- 2. E.M., Strong, Weak
- 3. Quarks, Hadrons & colour
- 4. Expt Methods
- 5. Open questions

 ν masses & oscillations

Recall Cabibbo theory of quarks in weak interactions $d' = d \cos \theta_c + s \sin \theta_c$ $s' = -d \sin \theta_c + s \cos \theta_c$ Generalising

$$\binom{d'}{s'} = \binom{CMK}{(3 \times 3 \text{ matrix})} \binom{d}{s}$$

There may be analogous mixing in ν - sector

$$\begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = \begin{pmatrix} MNS \end{pmatrix} \begin{pmatrix} v_e \\ v_\mu \\ v_\tau \end{pmatrix}$$

MNS=Maki-nakagawa-sakato 3x3 matrix i.e. v_e is a mixture of $v_1, v_2 \& v_3$ Turns out that if you initially have an v_e

 $\mid v_e(t=0) \rangle = \cos \alpha \mid v_1 \rangle + \sin \alpha \mid v_2 \rangle$

(2 flavour case At a later time

 $|v_e(t \neq 0)\rangle = A'(t) |v_1\rangle + B'(t) |v_2\rangle$ Re-write $|v_{1,2}\rangle$ in terms of $|v_{e,\mu}\rangle$

```
\rightarrow |v_e(t \neq 0)\rangle = A(t) |v_e\rangle + B(t) |v_\mu\rangle
```

Where

$$A(t) = e^{-iM_1t}\cos^2 \alpha + e^{-iM_2t}\sin^2 \alpha$$
$$P(\nu_e \to \nu_\mu) = |A(t)|^2$$

This explains the solar ν problem-

Why do we not see enough v_e from sun? Homestake solar v detector (1970s) Salsbury detector (1999+) $p + Be^7 \rightarrow B^8 + \gamma$

$$Be^{8} + e^{+} + v_{a}$$

Tried to se v_e , but fewer than predicted

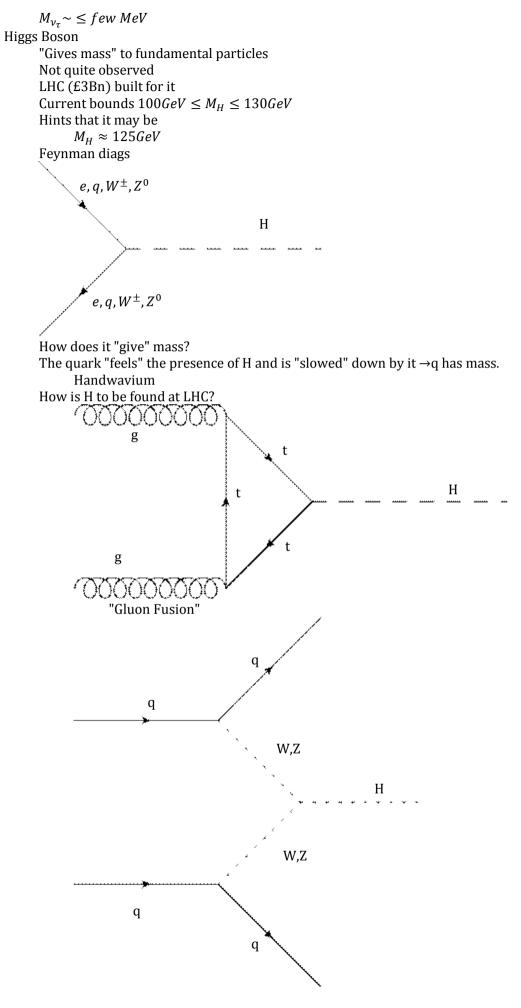
Now v beams are "fired" from one experiment (e.g. CERN & Fermilab) through earth & detected elsewhere:

(CERN \rightarrow Gran Sasso Lab, Italy)

(Fermilab→Minnesota)

 $M_{\nu_e} \sim \leq few \ eV$

 $M_{\nu_{\mu}} \sim \leq few hundred KeV$



Matter-antimatter asymmetry

<u>Known</u> universe is almost entirely matter (baryons) & not anti-matter The Std Model theory is (almost) matter-antimatter symmetric Experiment says Universe \approx all matter

Why? Answer- "Don't Know"

Dark matter

Stars rotate around galaxies much faster than can be accounted for by the seen/observed matter in the galaxy

Gravity
$$F_g - ma$$

Circular Orbit, $\frac{GMm}{r^2} = \frac{mv^2}{r}$
 $v = \frac{2\pi r}{T}$
 $\frac{GM}{r} = 4\pi^2 \frac{r^2}{T^2}$
 $\rightarrow T^2 \propto \frac{1}{M}$

T observed to be small i.e. stars traveling faster than expected!

⇒ missing mass in galaxies

Two main ideas to explain this

MACHOS- Massive Compact Halo Objects (Astronomical solution)

WIMPS- weakly interacting massive particles (particle physics solution)

~4% of universe is "ordinary matter" (i.e. baryonic)

~25% is dark matter

~70% is dark energy

Dark energy

After big bang gravity acts to slow expansion

Observations of type IA supernova (standard candles) show for a particular red shift (relative speed) have to look at fainter objects than predicted \Rightarrow the earth is further away than expected \Rightarrow implies universe (at large distances) is expanding faster than predicted

? Big question

Gravity/GUT/TOE/String Theory

Std. model doesn't include gravity

GUT- Grand Unified Theory

=Strong +Electro-weak

TOE- Theory of Everything

=GUT+Gravity

String Theory

4. Expt Methods

Accelerators

Either/or

Fixed Target	Colliding beams
\rightarrow	$\rightarrow \leftarrow$

Either linear or cyclic (circular)

Fixed target vs collider

Recall W=invariant mass^2=amount of energy available to prroduce new particle

 $(15) \rightarrow W \sim \sqrt{E_{bean}}$ fixed target

 $W \sim E_{beam}$ collider

So collider preferred

Linear cf Cathode Ray Tube

Cyclic

a) Cyclotron (Lawerence 1929)

- Charged particle move in a circle in a mag fld \underline{B} and are accelerated once/twice per orbit \Rightarrow for a fixed \underline{B} they''ll spiral outwards
 - Since particle is moving in a spiral ⇒ accelerating⇒ emits radiation (photons)⇒ looses energy Turns out energy loss

$$\sim \frac{1}{m^4}$$

So energy loss for e^- huge cf P

b) Synchrotron (Oliphant) $\underline{v} \& \underline{B}$ increase synchronously to maintain const radius LEP and LHC are synchrotrons