Electromagnetism II

31 January 2012 09:59

Syllabus

Maxwell's equations (Vacuum)<-Fundamental Electromagnetic waves Maxwell's equations (in media)<- useful approx. in some applications Electrostatics Magnetism Field theory-> radiation from a dipole Comments: No new maths ਰ_ਰ Only new experiment We will use: Vector calculus Electricity & magnetism (matter & fields II) Books

Introduction to electromagnetism- Griffiths Feynman lectures in physics

Vector Calculus- A Reminder

31 January 2012 10:19

Let us represent any position in this room by cartesian coordinates

If we measure the temperature at every point in the room, we get a scalar function T(x,y,z)We can use the gradient operator to determine how this function changes

$$grad T = \underline{\nabla}T = \begin{pmatrix} \frac{\delta T}{\delta x} \\ \frac{\delta T}{\delta y} \\ \frac{\delta T}{\delta z} \end{pmatrix}$$

This is a vector quantity

 $\underline{\nabla}T$ gives the direction in which the function is changing most quickly and how quickly it is changing

We have defined $\underline{\nabla} = \left(\frac{\delta}{\delta x}, \frac{\delta}{\delta y}, \frac{\delta}{\delta z}\right)$ $V \times \nabla \neq \nabla \times V$

We can use index notation

$$(\underline{\nabla} \times \underline{V})_{i} = \varepsilon_{ijk} \delta_{j} V_{k}$$

$$\overset{(*)}{\epsilon_{ijk}} = \begin{cases} +1 & if \{i, j, k\} = \{1, 2, 3\}, \{2, 3, 1\}, \{3, 1, 2\} \\ -1 & if \{i, j, k\} = \{3, 2, 1\}, \{2, 1, 3\}, \{1, 3, 2\} \\ 0 & all \ others \end{cases}$$

In (*) we have a single index on both sides

(*) holds for each value of I

Ie i=1,i=2 and i=3

(*) is 3 scalar equations

J and k indices are both paired=> both are summed over Exercise= Expand (*) and confirm it agrees with non-index way

Divergence->sinks & sources $\underline{\nabla} * \underline{V} = \delta_i V_i$

Curl $[\underline{\nabla} \times \underline{V}]_i = \varepsilon_{ijk} \delta_j V_k$

Curl⇔ Circulation Divergence⇔ Sources/sinks

We also have the grad operation. Given a scalar field f, we can generate a vector \underline{v} using

$$\underline{v} = \underline{\nabla}f$$

$$[v_i = \delta_i f]$$
We can't get a vector field this way
In particular, if $\underline{v} = \underline{\nabla}f$ then $\underline{\nabla} \times \underline{v} = 0$
Proof

$$[\underline{\nabla} \times \underline{v}]_i = \varepsilon_{ijk} \delta_j v_k = \varepsilon_{ijk} \delta_j \delta_k f$$
Recall

$$\frac{\delta}{\delta y} \frac{\delta}{\delta x} f = \frac{\delta}{\delta x} \frac{\delta}{\delta y} f \text{ etc}$$

$$\Rightarrow \delta_j \delta_k f = \delta_k \delta_j f$$

$$\delta_j \delta_k = \delta_k \delta_j$$

$$\varepsilon_{ijk} = \text{antisymmetric under } j \leftrightarrow k$$

$$\begin{split} [\underline{\nabla} \times \underline{\nu}]_i &= \varepsilon_{ijk} \delta_j \delta_k f \\ \text{We can re-label pair indices } j \to a, k \to b \\ [\underline{\nabla} \times \underline{\nu}]_i &= \varepsilon_{iab} \delta_a \delta_b f \\ \text{Re-label } a \to k, b \to j \\ [\underline{\nabla} \times \underline{\nu}]_i &= \varepsilon_{ikj} \delta_k \delta_j f \\ \text{This relabeling effectively swaps } j \leftrightarrow k \\ [\underline{\nabla} \times \underline{\nu}]_i &= \varepsilon_{ikj} \delta_k \delta_j f = -\varepsilon_{ijk} \delta_j \delta_k f = \varepsilon_{ijk} \delta_j \delta_k f = 0 \\ \text{So } \underline{\nabla} \times \underline{\nabla} f &= -\underline{\nabla} x \underline{\nabla} f \Rightarrow \underline{\nabla} \times \underline{\nabla} f = 0 \end{split}$$

Divergence (Gauss) Theorem

Given a volume bounded by a surface S with an outward normal vector dS Then

$$\int_{V} dV \, \underline{\nabla} * \underline{V} = \int_{S} \underline{v} * d\underline{S}$$

Stokes' Theorem

Given a closed path b with line element $d\underline{l}$ and \underline{any} surface S bounded by b

$$\oint_{b} \underline{V} d\underline{l} = \int_{S} (\underline{\nabla} \times \underline{V}) * d\underline{S}$$

And Now for Something Completely Different

07 February 2012 10:30

1. Gauss' law

Integral over any closed surface of $\underline{E} * d\underline{S} = \frac{1}{\epsilon_0}$

(charge enclosed) $d\underline{S}$ is outward normal to surface Let the charge density be $\rho(x)$ Charge enclosed=

$$=\int_{V}dV
ho$$

Gauss' Law

$$\rightarrow \int_{S} \underline{E} d\underline{S} = \frac{1}{\epsilon_{0}} \int_{V} dV \rho$$
Divergence th'm

$$= \int_{V} dV (\underline{\nabla} * \underline{E})$$

$$\Rightarrow \int_{V} dV \left[\underline{\nabla} * \underline{E} - \frac{\rho}{\epsilon_{0}} \right] =$$

This must hold for <u>any</u> volume \Rightarrow integral must vanish

0

$$\Rightarrow \boxed{\underline{\nabla} * \underline{E} = \frac{\rho}{\epsilon_0}}$$
[M1]

2. No magnetic monopoles

No magnetic monopoles have been detected

 \Rightarrow No sources/sinks for magnetic field

$$\Rightarrow \underline{\nabla * \underline{B}} = 0$$
[M2]

3. Faraday & Lenz's Law

Whenever the magnetic flux linking a circuit changes, an EMF is induced in the circuit. The induced EMF has magnitude proportional to the rate of change of flux and its direction is such as to oppose the change.

As there are no magnetic monopoles, there is nothing for the <u>B</u> to start/end on \Rightarrow every line passing through b must pass through the surface S (for ANY surface bounded by b) We can use a surface integral to "count" the <u>B</u> lines The magnetic flux through the circuit

$$\Phi = \int_{S} \underline{B} d\underline{S}$$

The induced EMF is
$$\int_{b} \underline{E} d\underline{l}$$

 $\int_{b} \underline{\underline{E}} d\underline{l} = -\int_{S} \left(\frac{\delta \underline{\underline{B}}}{\delta t} \right) d\underline{\underline{S}}$

Lenz's minus sign- EMF opposes change Use Stoke's theorem

$$\int_{\underline{B}} \underline{E} d\underline{l} = \int_{S} (\underline{\nabla} \times \underline{E}) d\underline{S}$$

Apply to faraday & Lenz

$$\int_{S} (\underline{\nabla} \times \underline{E}) * d\underline{S} = -\int_{S} \left(\frac{\delta \underline{B}}{\delta t}\right) * d\underline{S}$$
$$\Rightarrow \int_{S} \left(\frac{\delta \underline{B}}{\delta t} + \underline{\nabla} \times \underline{E}\right) * d\underline{S} = 0$$

This must hold for ANY surface \Rightarrow integrand vanishes

$$\Rightarrow \frac{\delta \underline{B}}{\delta t} + \underline{\nabla} \times \underline{E} = 0 \Rightarrow \underbrace{\underline{\nabla} \times \underline{E} = -\frac{\delta \underline{B}}{\delta t}}_{[M3]}$$

4. Ampere's Law

Integral of <u>B</u> * <u>dl</u> around any closed path = $\mu_0 x$ (current enclosed) Unfortunately, this isn't quite correct Consider a wire carrying current I

We can use the surface S to measure the current through the loop. If the current density is j

$$I = \int_{S^-} \underline{j} d\underline{S}$$

Ampere would give

$$\int_{b} \underline{B} * d\underline{l} = \mu_0 \int_{S} \underline{j} d\underline{S}$$

Problem: If our surface passes between the plates of a capacitor, there is no current. Consider a parallel plate capacitor

If the total charge on each plate is $\pm Q$ we have charge densities $\pm \sigma = \pm \frac{Q}{A}$ To find the electric field, we use Gauss' law.

Consider a "pill box" of area a

Charge enclosed = σa Neglecting edge effects, <u>*E*</u> is perp to plates

$$\int_{surface of pillbox} \underline{\underline{E}} d\underline{S} = |\underline{E}| a$$

By Gauss' law

$$|E| = \frac{0}{\epsilon_0}$$

Now think of our Ampere's law surface that cuts down the centre of the capacitor

$$\int_{S} \underline{\underline{E}} d\underline{S} = \frac{\sigma}{\epsilon_{0}} A = \frac{Q}{\epsilon_{0}} = charge \text{ on plate}$$

Taking time derivative, $\frac{\delta \underline{E}}{\delta t}$ over the surface, for parallel plate capacitor
 $\epsilon_{0} \int_{S} \underline{\underline{E}} * d\underline{S} = I$

(shown last time)*** ⇒we modify ampere's law

$$\int_{closed path} \underline{B}d\underline{l} = \mu_0 \int_{S} d\underline{S} * \left(\underline{j} + \epsilon_0 \frac{\delta \underline{E}}{\delta t}\right)$$

Extra bit is "displacement current

Integral is now independent of the surface

Ampere's Law corrected $\int_{b} \underline{B} d\underline{l} = \mu_0 \int_{S} d\underline{S} * \left(\underline{j} + \epsilon_0 \frac{\delta \underline{E}}{\delta t}\right)$ Now apply Stokes' theorem

$$\int_{b} \underline{B} d\underline{l} = \int_{S} (\underline{\nabla} \times \underline{B}) d\underline{S} = \mu_{0} \int_{S} d\underline{S} * \left(\underline{j} + \epsilon_{0} \frac{\delta \underline{E}}{\delta t}\right)$$
$$\Rightarrow \int_{S} d\underline{S} * \left(\mu_{0} \left|\underline{j} + \epsilon_{0} \frac{\delta \underline{E}}{\delta t}\right| - \underline{\nabla} \times \underline{B}\right) = 0$$

This holds for any surface \Rightarrow integrand vanishes

$$\Rightarrow \underline{\nabla \times \underline{B}} = \mu_0 \underline{j} + \mu_0 \epsilon_0 \frac{\delta \underline{E}}{\delta t}$$
[M4]

Maxwell Equations

$$\underline{\nabla} * \underline{E} = \frac{\rho}{\epsilon_0}$$
[M1]

$$\underline{\nabla} * \underline{B} = 0$$
[M2]

$$\underline{\nabla} \times \underline{E} = -\frac{\delta \underline{B}}{\delta t}$$
[M3]

$$\underline{\nabla} \times \underline{B} = \mu_0 \underline{j} + \mu_0 \epsilon_0 \frac{\delta \underline{E}}{\delta t}$$
[M4]
In vacuum, $\rho = 0, \underline{j} = 0$

$$\nabla * E = 0$$

$$\nabla \underline{\nabla} * \underline{\underline{E}} = 0$$

$$\nabla \underline{\nabla} * \underline{\underline{B}} = 0$$

$$\nabla \times \underline{\underline{E}} = -\frac{\delta \underline{B}}{\delta t}$$

$$\nabla \times \underline{\underline{B}} = \mu_0 \epsilon_0 \frac{\delta \underline{\underline{E}}}{\delta t}$$

Recap

We will need $\left(\underline{\nabla} \times (\underline{\nabla} \times \underline{v})\right)$ $[\underline{\nabla} \times (\underline{\nabla} \times \underline{v})]_i = \varepsilon_{ijk} \delta_j (\underline{\nabla} \times \underline{v}) k = \varepsilon_{ijk} \delta_j \varepsilon_{klm} \delta_l v_m$ $=\varepsilon_{kji}\varepsilon_{klm}\delta_j\delta_l v_m$ $= (\delta_{il}\delta_{jm} - \delta_{im}\delta_{jl})\delta_{j}\delta_{l} = \delta_{i}(\delta_{j}v_{j}) - (\delta_{j}\delta_{j})v_{i}$ $= \delta_{i}(\underline{\nabla} * \underline{v}) - (\nabla^{2})v_{i}$ $\Rightarrow \underline{\nabla} \times (\underline{\nabla} \times \underline{v}) = \underline{\nabla}(\underline{\nabla} * \underline{v}) - \nabla^{2}\underline{v}$ Vacuum solutions of Maxwell equations Start with [M3] $\underline{\nabla} \times \underline{E} = -\frac{\delta \underline{B}}{\delta t}$ Take curl of both sides $\underline{\nabla} \times (\underline{\nabla} \times \underline{E}) = \underline{\nabla} \times \left(-\frac{\delta \underline{B}}{\delta t} \right)$ $\underline{\nabla} (\underline{\nabla} * \underline{E}) - \nabla^2 \underline{E} = -\frac{\delta}{\delta t} (\underline{\nabla} \times \underline{B})$ $(\underline{\nabla} * \underline{E}) = 0$ because [M1] $(\nabla \times B) \rightarrow use |M4|$

$$\Rightarrow -\nabla^2 \underline{E} = -\frac{\delta}{\delta t} \left(\mu_0 \epsilon_0 \frac{\delta \underline{E}}{\delta t} \right)$$
$$\Rightarrow \left(\mu_0 \epsilon_0 \frac{\delta^2}{\delta t^2} - \nabla^2 \right) \underline{E} = 0$$

Wave equation \rightarrow light in a vacuum? Consider a plane wave solution $\underline{E} = \underline{E}_0 \cos(x - vt)$

$$\frac{\delta}{\delta t} \underline{\underline{E}} = \underline{\underline{E}}_0 v \sin(x - vt)$$
$$\frac{\delta^2}{\delta t^2} \underline{\underline{E}} = -\underline{\underline{E}}_0 v^2 \cos(x - vt)$$
$$\nabla^2 \underline{\underline{E}} = \left(\frac{\delta^2}{\delta x^2} + \frac{\delta^2}{\delta y^2} + \frac{\delta^2}{\delta z^2}\right) \underline{\underline{E}}$$
$$\frac{\delta \underline{\underline{E}}}{\delta x} = -\underline{\underline{E}}_0 \sin(x - vt)$$
$$\frac{\delta^2 \underline{\underline{E}}}{\delta x^2} = -\underline{\underline{E}}_0 \cos(x - vt)$$

Sub into wave equation $-(\mu_0\epsilon_0v^2-1)\underline{E}_0\cos(x-vt)=0$ Of this is to hold for all x and t, we need $v^{2} = \frac{1}{\mu_{0}\epsilon_{0}} \Rightarrow \boxed{v = c}$ Our solution

 $\underline{E} = \underline{E}_0 \cos(x - ct)$ Satisfies the wave equation. What about the other maxwell equations? [M1]

$$\nabla * \underline{E} = 0$$
(we're in a vacuum)

$$\Rightarrow \frac{\delta}{\delta x} E_x + \frac{\delta}{\delta y} E_y + \frac{\delta}{\delta z} E_z = 0$$

$$\Rightarrow \frac{\delta}{\delta x} E_x = 0$$

$$\Rightarrow (E_0)_x (-\sin(x - ct)) = 0$$
We need this to hold for all x and t

$$\Rightarrow (E_0)_x = 0 \Rightarrow \underline{E} \text{ is perpendicular to direction of travel}$$

We can arrange our axes so that

$$\underline{E} = \begin{pmatrix} 0 \\ E_0 \cos(x - ct) \\ 0 \\ \text{Wave eqn} \checkmark \\ \underline{\nabla} * \underline{E} = 0 \checkmark$$

Now use

$$\underline{\nabla} \times \underline{\mathbf{E}} = -\frac{\delta \underline{\mathbf{B}}}{\delta t}$$

To find \underline{B}

$$\Rightarrow \frac{\delta \underline{B}}{\delta t} = -\underline{\nabla} \times \underline{E} = - \begin{vmatrix} i & j & k \\ \frac{\delta}{\delta x} & \frac{\delta}{\delta y} & \frac{\delta}{\delta z} \\ 0 & E_0 \cos(x - ct) & 0 \end{vmatrix} = - \begin{pmatrix} 0 \\ 0 \\ -E_0 \sin(x - ct) \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ E_0 \sin(x - ct) \end{pmatrix}$$

Integrating with respect to time

$$\underline{B} = \begin{pmatrix} 0 \\ 0 \\ \frac{E_0}{c} \cos(x - ct) \end{pmatrix} + \text{ integration "constant"}$$
Integration "constant" has no time dependence
 \rightarrow not relevant for the EM radiation
Handwavium FTW

$$\underline{\underline{E}} = \begin{pmatrix} 0\\ E_0 \cos(x - ct) \\ 0 \end{pmatrix}$$

$$\underline{B} = \begin{pmatrix} 0 \\ 0 \\ \underline{E_0} \\ c \cos(x - ct) \end{pmatrix}$$
Wave eqn \checkmark
 $\underline{\nabla} * \underline{E} = 0 \checkmark$
 $\underline{\nabla} * \underline{E} = 0 \checkmark$
 $\underline{\nabla} \times \underline{E} = -\frac{\delta \underline{B}}{\delta t} \checkmark$
 $\underline{\nabla} \times \underline{B} = \mu_0 \epsilon_0 \frac{\delta \underline{E}}{\delta t}$

We have a wave moving at speed c in the x- direction <u>*E*</u> and <u>*B*</u> are mutually orthogonal and orthogonal to the direction of travel

$$\underline{\nabla} \times \underline{E} = -\frac{\delta \underline{B}}{\delta t} \quad \underline{\nabla} \times \underline{B} = \mu_0 \underline{j} + \mu_0 \epsilon_0 \frac{\delta \underline{E}}{\delta t}$$

And THEN there was light

Back to the Basics

09 February 2012 12:33

For \underline{E} fields, consider a parallel plate capacitor

To find \underline{E} , we use a Gauss pillbox of area a Gauss' law

 $\int_{S} \underline{E} d\underline{S} = \frac{1}{\epsilon_{0}} \times \text{(charge enclosed)}$ If the charge per unit area is σ $|E|a = \frac{\sigma a}{\epsilon_{0}} \Rightarrow |E| = \frac{\sigma}{\epsilon_{0}}$

If the plate spacing is d, the potential difference across the plates is $V = |E|d = \frac{\sigma d}{\epsilon_0}$

If the plates have area L^2 , the total charge on the plate $Q = \sigma L^2$

And we have Od

$$V = \frac{Qa}{L^2\epsilon_0}$$

The work done in moving a charge dQ against a voltage V is VdQ The work done in charging the capacitor is

$$WD = \int_0^{Q_F} VdQ = \int_0^{Q_F} \frac{Qd}{L^2 \epsilon_0} dQ = \frac{d}{L^2 \epsilon_0} \left[\frac{Q^2}{2} \right]_0^{Q_F} = \frac{dQ_F^2}{2L^2 \epsilon_0}$$

This energy is stored in the \underline{E} field Using

$$|E| = \frac{\sigma}{\epsilon_0} = \frac{\sigma}{\epsilon_0}$$

We have $Q = \epsilon_0 L^2 |E|$

$$WD = \frac{1}{2} \frac{d}{L^2 \epsilon_0} (\epsilon_0 L^2 |E|)^2 = \frac{1}{2} dL^2 \epsilon_0 |E|^2$$

Now dL^2 is the volume in which the electric field exists

Energy stored in electric field=WD in charging capacitor

$$= \frac{\epsilon_0}{2} |E|^2 * \text{(volume)}$$

$$\Rightarrow \text{ energy density in electric field} = \frac{\epsilon_0}{2} |E|^2$$

By studying a capacitor, we find energy density in electric field $=\frac{\epsilon_0}{2}|E|^2$

Magnetic field energy density

For \underline{B} fields, we can consider a solenoid.

Let solenoid have n turns per unit length and carry a current I Solenoid is long& straight (length L) and area A

In cross section

$$\oint \underline{B} d\underline{l} = \mu_0 x (\text{current enclosed})$$
For the ampere circuit drawn,

$$\oint \underline{B} d\underline{l} = |\underline{B}| S$$
The current enclosed=nSI
Ampere's law

$$\Rightarrow |B|S = nSI\mu_0 \Rightarrow |B| = \mu_0 nI \text{ (Uniform throughout interior of solenoid)}$$
The magnetic flux per turn of the coil is $|B|A = \mu_0 nIA$
The solenoid has length $L \Rightarrow nL$ turns in total
 \Rightarrow total flux through solenoid is $n^2\mu_0 LAI$
If I changes, by faraday+lenz's law we have an $EMF = -n^2\mu_0 LAI$
The work done in "energising" the solenoid is
 $WD = \int V dQ = \int V I dt = n^2\mu_0 LA \int I I dt = n^2\mu_0 LA \frac{I^2}{2}$

$$\Rightarrow WD = \frac{LA}{2\mu_0} (nI\mu_0)^2 = \frac{LA}{2\mu_0} \underline{B}\underline{B}$$

LA

The work done is stored in the magnetic field

 \Rightarrow energy in magnetic field = $LA \frac{BB}{2\mu_0}$

LA=volume of solenoid \Rightarrow energy density in <u>B</u> field $=\frac{\underline{BB}}{2\mu_0}$

In general, for \underline{E} and \underline{B} fields, total energy stored in fields is

Energy in fields = $\int dV \left(\frac{\epsilon_0}{2} \underline{E} \underline{E} - \frac{\underline{B} \underline{B}}{2\mu_0}\right)$

Continuity equations

(The change in amount of stuff in a box)=(stuff put in)-(stuff taken out)

e.g. bank account

(Rate The change in amount of stuff in a box)=(Rate stuff put in)-(Rate stuff taken out) Apply this to the energy in the $\underline{E} \& \underline{B}$ fields in some fixed volume V IF the total energy is

$$\epsilon = \int dV \left(\frac{\epsilon_0}{2} \underline{E}\underline{E} - \frac{\underline{B}\underline{B}}{2\mu_0}\right)$$

$$\Rightarrow \frac{\delta\epsilon}{\delta t} = \int dV \left(\epsilon_0 \underline{E}\underline{E} - \frac{\underline{B}\underline{B}}{\mu_0}\right)$$
Recall in vacuum
$$\frac{\nabla \times \underline{E} = -\underline{B}}{\nabla \times \underline{B} = \mu_0 \epsilon_0 \underline{E}}$$

$$= \frac{1}{\mu_0} \int dV \left(\underline{E}(\nabla \times \underline{B}) - \underline{B}(\nabla \times \underline{E})\right)$$
What is this?
Consider
$$\frac{\nabla(\underline{E} \times \underline{B}) = \delta_i(\underline{E} \times \underline{B})_i = \delta_i[\epsilon_{ijk}E_jB_k]}{\epsilon_{ijk} \text{ is a constant}}$$

$$= \epsilon_{ijk} (B_k(\delta_i E_j) + E_j(\delta_i B_k))$$

Product rule

$$= B_k \varepsilon_{kif}(\delta; E_j) - E_i \varepsilon_{kik} \delta; B_k$$

$$\varepsilon_{kif} \rightarrow Cyclic order preserved in \varepsilon_{ijk}$$

$$\varepsilon_{jkf} \rightarrow Tpair of indices swapped \rightarrow -1 factor
$$= B_k (\Sigma \times E)_k - E_j (\Sigma \times B)_j = \frac{|B| + (\Sigma \times E) - E + (\nabla \times B)| = \nabla(E \times B)|}{h_0} + \text{starting point}$$

$$\frac{\delta \varepsilon}{\delta t} = \frac{1}{\mu_0} \int dV \left(-\nabla(E \times B) \right) = \frac{1}{\mu_0} \int_{S}^{J} dS(E \times B)$$
Surface S bounds volume V \rightarrow divergence theorem

$$\frac{1}{\mu_0} \int_{S} dS(E \times B) \Rightarrow \text{Energy flux}$$

$$\frac{\delta \varepsilon}{\delta t} = -\int_{S} dS \frac{1}{\mu_0} (E \times B)$$
Often, we can identify

$$\frac{(E \times B)}{\mu_0}$$
With energy flux out of the box, but beware! e.g. consider a solenoid inside a capacitor which gives static crossed *E* & *B* fields

$$\frac{(E \times B)}{\mu_0}$$
is called the Poynting vector
Energy Density: B. Hux in E.M. Waves
Recall simple EM wave

$$E = \begin{pmatrix} 0 \\ 0 \\ \frac{1}{c_c} \cos(x - ct) \end{pmatrix}$$
Energy Density:

$$\frac{\varepsilon_0}{2} EE + \frac{BB}{2\mu_0} = \frac{\varepsilon_0}{2} E_0^2 \cos^2(x - ct) + \frac{E_0^2}{2} C^2 \mu_0} \cos^2(x - ct)$$
E& *B* lluctuate \rightarrow we average over a cycle
 $< \cos^2(x - ct) > = \frac{1}{2}$
 $\Rightarrow < \text{Energy Density} > \frac{\varepsilon_0 E_0^2}{4} + \frac{E_0^2}{4c^2 \mu_0}$
 $\left(\text{Using } c^2 = \frac{1}{e_\mu \mu_0} \right)$
 $= \frac{\varepsilon_0 E_0^2}{4} + \frac{\varepsilon_0 E_0^2}{4} = \frac{\varepsilon_0 E_0^2}{4}$
Energy Plux
 $(\text{can use Poynting vector here})$
 $< \frac{1}{\mu_0} E E > = < \frac{1}{\mu_0} \frac{E_0}{4} - \frac{1}{2} \frac{E_0^2}{4}$
Energy Plux
 $(\text{can use Poynting vector here})$
 $< \frac{1}{\mu_0} E E > = < \frac{1}{\mu_0} \frac{E_0}{2} \frac{E_0 - E_0^2}{2} (\cos^2(x - ct) > \frac{2}{8}$
Energy Plux
 $(\text{can use Poynting vector here})$
 $< \frac{1}{\mu_0} E E > = < \frac{1}{\mu_0} \frac{E_0^2}{2} \frac{E_0}{2} (\cos^2(x - ct) > \frac{2}{8}$
Energy Plux $> = c < \text{Energy Density} > \frac{2}{8}$
Energy Plux $> = c < \text{Energy Density} > \frac{2}{8}$
Energy Plux $= c < \text{Energy Plux} = c < \text{Energy Plux} = c < \text{Energy Plux} = \frac{1}{2} \frac{E_0^2}{2}$
Energy Plux $= c < \text{Energy Plux} = c < \text{Energy Plux} = \frac{1}{2} \frac{E_0^2}{2}$
Energy Plux $= c < \text{Energy Plux} = \frac{1}{2} \frac{E_0^2}{2} \frac{E_0^2}{2}$
Energy Plux $= c < \text{Energy Plux} = \frac{1}{2} \frac{E_0^2}{2} \frac{E_0^2}{2}$
Energy Plux $= c < \text{Energy Plux} = \frac{1}{2} \frac{E_0^2}{2} \frac{E_0^2}{2} \frac{E_0^2}{2} \frac{E_0^2}{2} \frac{E_0^2}{2} \frac$$$

A light source on one side of the ship sends a flash of light across to a detector on the other side

Let the light pulse have total energy E

The source battery converts a tiny mass $m = E/c^2$ into energy to produce the light At the far end, the detector converts the light back to chemical energy in its battery \Rightarrow detector battery gets heavier by $m = E/c^2$

If the ship doesn't move, the centre of mass of the system moves with no external force acting

Resolution

The light carries momentum p in the direction of travel

When the light is emitted, the ship recoils with speed $v_{recoil} = P/M$ M=mass of ship

If the detector is distance L from the source, the light travel time is just L/c

In this time, the ship moves a distance $\frac{P}{mc}$

When the light is absorbed, it transfers its momentum back to the ship=>ship stops

To keep centre of mass fixed,

Mass * distance moved = Mass * distance moved \rightarrow

$$mL = M \frac{P}{M} \frac{L}{M}$$

 $m = \frac{P}{c}$

Then the momentum carried by the light

 $= c \times (mass converted to produce the light)$

$$= c * \frac{E}{c^2} \Rightarrow \boxed{P = \frac{E}{c}}$$

For our simple wave

Energy density, $u, < u > = \frac{1}{2}\varepsilon_0 E_0^2$ Average energy flux $c < u > \hat{x}$ Average momentum density $< \underline{P} > = \frac{<u>}{c}\hat{x}$

Media 1: Simple

15 February 2012 11:49

"Stuff has got bits in it"- in particular, nuclei + electrons⇒ charged particles that ca act as sources of currents

Option 1: remember the bits and use

$$\underline{\nabla} * \underline{E} = \frac{p}{\epsilon_0} \qquad \underline{\nabla} * \underline{B} = 0$$
$$\underline{\nabla} \times \underline{E} = -\frac{\delta \underline{B}}{\delta t} \quad \underline{\nabla} \times \underline{B} = \mu_0 \underline{j} + \mu_0 \epsilon_0 \frac{\delta \underline{E}}{\delta t}$$

Problem

There are many charges to worry about

<u>Option 2</u>: incorporate bulk effects of all the charges into modifications of the maxwell eqns then ignore the presence of the charges

This is an approximation/fudge

Media 1: Conductors

<u>Plan</u>

Incorporate the bulk properties of the medium into our Maxwell's equations rather than work at the individual electron level. \rightarrow we will be making approximations We will consider "simple" materials

Simple means

- 1. Linear \rightarrow Response is proportional to stimulus
- 2. Isotropic →No preferred directions in the material ⇒ response is proportional to the stimulus

<u>Example</u>

In a simple conductor the current density j is related to the applied field by

 $\underline{j} = \sigma \underline{E}$

 σ is conductivity

Now consider maxwell's equations in a conducting medium

We have
$$\rho = 0, j = \sigma E$$

M1 becomes

$$\begin{split} \underline{\nabla}. \, \underline{\underline{E}} &= 0, \qquad \underline{\nabla} \times \underline{\underline{E}} &= -\underline{\dot{\underline{B}}} \\ \underline{\nabla}. \, \underline{\underline{B}} &= 0, \qquad \underline{\nabla} \times \underline{\underline{B}} &= \mu_0 \big(\underline{\underline{j}} + \epsilon_0 \underline{\underline{\dot{E}}} \big) \\ &= \mu_0 \big(\sigma \underline{\underline{E}} + \epsilon_0 \underline{\underline{\dot{E}}} \big) \end{split}$$

We use the same game as we did in vacuum, i.e.

Take curl of
$$\underline{\nabla} \times \underline{E} = -\underline{B}$$

 $\Rightarrow \underline{\nabla} \times (\underline{\nabla} \times \underline{E}) = -\underline{\nabla} \times (\underline{B})$
 $\Rightarrow \underline{\nabla} (\underline{\nabla} \cdot \underline{E}) - \nabla^2 \underline{E} = -\frac{\delta}{\delta t} (\underline{\nabla} \times \underline{B})$
 $\underline{\nabla} \cdot \underline{E} = 0$
By m1
 $\Rightarrow -\nabla^2 \underline{E} = -\frac{\delta}{\delta t} (\mu_0 \sigma \underline{E} + \mu_0 \epsilon_0 \underline{E})$
 $\Rightarrow \mu_0 \epsilon_0 \underline{E} - \nabla^2 \underline{E} + \mu_0 \sigma \underline{E} = 0$
(*)

 $\mu_0 \sigma \underline{\dot{E}}$ = additional term due to conductivity By analogy with SHM, the additional term introduces damping We guess the form of the solution

 $\underline{\underline{E}} = \underline{\underline{E}}_0 \exp\left[(-\lambda + ik)\hat{\underline{k}}\underline{x} - i\omega t\right]$ \hat{k} unit vector in direction of propagation

For k and ω both +ve, the wave travels in the \hat{k} direction We take our guess and substitute into (*)

 $\underline{\dot{E}} = -i\omega\underline{E}, \qquad \underline{\ddot{E}} = (-i\omega)^2\underline{E} = -\omega^2\underline{E}$

 $\nabla^2 = \frac{\delta^2}{\delta x^2} + \frac{\delta^2}{\delta y^2} + \frac{\delta^2}{\delta z^2}$ We also need the spatial derivatives

Remember $\hat{k}.x = \hat{k}_x x + \hat{k}_y y + \hat{k}_z z$
$$\begin{split} &\frac{\delta}{\delta x}\underline{\underline{E}} = (-\lambda + ik)\hat{k}_{x}\underline{\underline{E}}, \qquad \frac{\delta^{2}\underline{\underline{E}}}{\delta x^{2}} = (-\lambda + ik)^{2}\hat{k}_{x}\underline{\underline{E}} \\ &\Rightarrow \nabla^{2}\underline{\underline{E}} = (-\lambda + ik)^{2} (\hat{k}_{x}^{2} + \hat{k}_{y}^{2} + \hat{k}_{z}^{2})\underline{\underline{E}} \end{split}$$
 $\hat{k} \cdot \hat{k} = 1$ Plugging into (*) $\mu_0\epsilon_0(-\omega^2)\underline{E} - (-\lambda + ik)^2\underline{E} + \mu_0\sigma(-i\omega)\underline{E} = 0$ $\Rightarrow (-\omega^2 \mu_0 \epsilon_0 - (-\lambda + ik)^2 - i\omega \mu_0 \sigma) \underline{E} = 0$ If this is to hold for all t and \underline{x} , we need $-\omega^2 \mu_0 \epsilon_0 - (-\lambda + ik)^2 - i\omega \mu_0 \sigma = 0$ Taking real and imaginary parts $\mu_0\epsilon_0\omega^2 + \lambda^2 - k^2 = 0$ (real part) $-2\lambda k + \mu_0 \sigma \omega = 0$ We have two constants \Rightarrow we can look for k and λ as a function of ω If we pick the frequency of light we shine onto a conductor The wavelength and damping are fixed From the Im part, $k = \frac{\mu_0 \sigma \omega}{2\lambda}$ Eliminate k from real part $\mu_0 \epsilon_0 \omega^2 + \lambda^2 = \left(\frac{\mu_0 \sigma \omega}{2\lambda}\right)^2$ Multiplying by $4\lambda^2 \Rightarrow$ $4\lambda^4 + 4\lambda^2(\mu_0\epsilon_0\omega^2) - (\mu_0\sigma\omega)^2 = 0$ Quadratic in λ^2 $\Rightarrow \lambda^2 = \frac{-4(\mu_0\epsilon_0\omega^2) \pm \sqrt{16(\mu_0\epsilon_0\omega^2)^2 + 16(\mu_0\epsilon_0\omega)^2}}{8}$ We take $+\sqrt{\Box}$ sol'n to ensure $\lambda^2 > 0$ For σ large, $\lambda^2 \rightarrow \frac{\sqrt{16(\mu_0 \sigma \omega)^2}}{8}$ $\Rightarrow \lambda^2 = \frac{\mu_0 \sigma \omega}{2}$ $\Rightarrow \lambda = \sqrt{\frac{\mu_0 \sigma \omega}{2}}, \quad k = \sqrt{\frac{\mu_0 \sigma \omega}{2}}$ For LARGE σ Frequency dependent dampening inside conductor Higher frequency \Rightarrow faster attenuation

Field is only non-vanishing in the "skin" of the material

As

Recap

21 February 2012 10:07

Media 1

Conducting Media Simple \equiv linear, isotropic In a simple conductor $\underline{j} = \sigma \underline{E}$ $\sigma =$ conductivity \Rightarrow modified wave equation \Rightarrow attenuation

Media 2: Dielectrics

21 February 2012 10:09

Now consider a medium which polarizes when an electric field is applied

As unlike charges attract, the applied electric field will ionize SURFACE charges BULK of material remains neutral

The effect of the surface charges is to <u>reduce</u> the component of the electric field <u>perpendicular</u> to the surface <u>More general case</u>

Consider an electric field at some angle to the surface of dielectric.

First resolve \underline{E} into components parallel (E_p) and normal (E_n) to surface Area A

The normal component of the electric induces a surface charge on the dielectric

Drawing short fat Gaussian pillbox, we see that the surface charge only affects the normal component of
$$\underline{E}$$

$$\int_{S} \underline{E} d\underline{S} = -E_{out}^{N} \times A + E_{in}^{N} \times A = \frac{1}{\epsilon_{0}} \times (\text{Charge Enclosed}) = \frac{A}{\epsilon_{0}} \times (\text{induced surface charge density}) \\ -E_{out}^{N} \times A \text{ Flat face in vacuum}$$

$$E_{in}^N \times A$$
 Flat face in dielectric

For a <u>simple</u>(linear response), the induced surface charge density is proportional to $E^N \Rightarrow E_{in}^N$ is some fraction of E_{out}^N

We can write

$$E_{in}^{N} = \frac{E_{out}^{N}}{\epsilon_{r}}$$

 ϵ_r is the "relative permittivity" of the medium- material dependent constant

 $\epsilon_r > 1$ <u>"Walking" an electron</u>

Consider taking a charge (e.g. electron) for a walk around the tall thin (green) path (anticlockwise) as shown. As the charge moves along the long sections of the path it experiences a force due to \underline{E} , the

component of the force parallel to the path is determined by $E_{in}^p(E_{out}^p)$ inside (outside) the dielectric The total work done in moving the charge around the complete circuit must be zero \Rightarrow work done on the charge by E_{out}^p while on the outside is recovered on the inside by $E_{in}^p \Rightarrow \boxed{E_{in}^p = E_{out}^p}$

That was the physics of dielectrics

Textbooks unfortunately then confuse matters by defining a range of new quantities (NOT EXAMINABLE- "an unfortunate historic aberration"- WBP)

The first is sensible: Polarization

 $\underline{\underline{P}} = \chi \epsilon_0 \underline{\underline{E}}$ $\chi = \text{susceptibility}$ $[\epsilon_r = 1 + \chi]$

The second is there to confuse: "electric displacement" $\underline{D} = \epsilon_0 \underline{E} + \underline{P}$ For simple dielectrics $\underline{D} = \epsilon_0 \underline{E}$

Using

$$E_{in}^{N} = \frac{E_{out}^{N}}{\epsilon_{r}} \Rightarrow \epsilon_{r} E_{in}^{N} = E_{out}^{N} \Rightarrow D_{in}^{N} = D_{out}^{N}$$

~

Maxwell in a dielectric

Rule:

- Send $\epsilon_0 \rightarrow \epsilon_r \epsilon_0$ and forget dielectric ϵ_0 appears in Gauss' law and Ampere; slaw
- 1. Consider gauss in a dielectric

Gauss

$$\int_{S} \underline{\underline{E}} d\underline{S} = 1/\epsilon_{0}$$
(charge enclosed)

A charge +Q pulls electrons towards it producing dipoles as shown

Now consider a gaussian surface- the ends of some dipoles will be inside whilse their +ve ends are outside

 \Rightarrow polarisation of the medium reduces the total charge inside the Gauss surface.

Applying gauss, we find a reduced electric field produced by a factor of ϵ_r *This what really happens* We want to take this by modifying Gauss' law

If forget the medium and use

$$\int_{S} \underline{\underline{E}} d\underline{S} = \frac{1}{\epsilon_r \epsilon_0}$$

We get the same answer as doing it properly i.e. sending $\epsilon_0 \rightarrow \epsilon_r \epsilon_0$ "fakes" it for Gauss' law 2. Dielectric Ampere's law

We introduced the displacement current s that the right hand side of ampere's law gave the same answer for surface S_1 and surface S_2 . Now consider filling the capacitor with a dielectric $\Rightarrow \underline{E}$ inside capacitor reduces electric field by a factor ϵ_r while the changing polarisation of the medium generates a current across S_2

Taking both effects into account, we get the same answer as before and $\int_{S_2} \square$ still matches $\int_{S_1} \square$ Again, we want to fake this

Using

$$\oint \underline{B}d\underline{l} = \mu_0 \int_{S} (\underline{j} + \epsilon_r \epsilon_0 \underline{\dot{E}}) d\underline{S}$$

Allows us to forget the dielectric

Again, we send $\epsilon_0 \rightarrow \epsilon_r \epsilon_0$ and forget the dielectric

3. Waves in dielectrics

A constant is a constant \Rightarrow we get a simple wave equation again The wave space in a vacuum, $c = 1/\sqrt{\epsilon_0\mu_0} \Rightarrow$ wave speed in the dielecric is $c' = 1/\sqrt{\epsilon_r\epsilon_0\mu_0} \equiv c/\sqrt{\epsilon_r}$ In optics the refractive index $n = \frac{c}{c'} = \sqrt{\epsilon_r}$ Consider light shining on to a slab of dielectric (e.g. glass) with polarisations as shown - all \underline{E} fields are

in the plane of the bond

$$E_{in} = E_{in}^{b} \exp\left(-i\omega t + \frac{i\omega}{c}\left(\cos\theta x + \sin\theta y\right)\right)$$

$$E_{ref} = E_{ref}^{b} \exp\left(-i\omega t + \frac{i\omega}{c}\left(\cos\theta x + \sin\theta y\right)\right)$$

$$E_{ref} = E_{ref}^{b} \exp\left(-i\omega t + \frac{i\omega}{c}\left(\cos\theta x + \sin\theta y\right)\right)$$

$$E_{rrans} = E_{trans}^{b} \exp\left(-i\omega t + \frac{i\omega}{c'}\left(\cos\theta x + \sin\theta y\right)\right)$$
We know that $E_{in}^{b} = E_{out}^{b}$ is parallel component of E is continuous across the boundary
$$\Rightarrow |E_{in}|\cos\theta + |E_{ief}|\cos\theta|_{x=0} = |E_{rrans}|\cos\theta'|_{x=0},$$

$$x = 0^{-} = |ust below 0$$
Substituting for the 3 waves
$$\Rightarrow |E_{in}^{b}|\cos\theta \exp\left(-i\omega t + \frac{i\omega}{c'}\sin\theta y\right) + |E_{rrans}^{a}|\cos\theta \exp\left(-i\overline{\omega}t + \frac{i\overline{\omega}}{c}\sin\theta y\right)$$
This must hold for all that all y
At y=0, this takes the form
$$(cons)t = -i\omega t + (cons)t e^{-i\omega t} = (const')e^{-i\omega t},$$
for this to hold for all values of t, we need $\omega = \overline{\omega} = \omega'$
Now consider $y \neq 0$ and cancel common factor of $e^{-i\omega t},$

$$(const) \exp\left[\frac{i\omega}{c}\sin\theta y\right] + (c\overline{cons}t) \exp\left[\frac{i\omega}{c}\sin\theta y\right] = (const') \exp\left[\frac{i\omega}{c}\sin\theta' y\right]$$
For this to hold for all y we need
$$\frac{\sin\theta}{sn} = \frac{\sin\theta}{c'} = \frac{\sin\theta'}{c'}$$

$$\frac{-\delta}{s\theta} = \frac{\theta}{s}$$

$$\frac{e_i}{c_i} = \frac{\sin\theta}{sin\theta'} = \sqrt{c_i} = n$$
Sume that
$$E_{in}^{b} = \frac{e_i}{c_i} = e_i E_{irrans}^{b}|\cos\theta'$$
We also have
$$E_{in}^{b} = \frac{e_i}{c_i} = e_i E_{irrans}^{b}|\cos\theta'$$
We also have
$$E_{in}^{b} = \frac{E_{in}^{b}}{c_i} = \cos\theta = |E_{irrans}^{b}|\cos\theta'$$
Imposing parallel component continuous gave
$$E_{in}^{b}| = e_{in}^{b}|_{in}|\sin\theta| = |E_{irrans}^{b}|\cos\theta'$$
Imposing $\theta = \delta$ we ceed
$$E_{in}^{b}|_{in} = E_{in}^{b}|_{in}|\sin\theta| = |E_{irrans}^{b}||\cos\theta'$$
Mow calso have
$$E_{in}^{b}|_{in} = E_{in}^{b}|_{in}|\sin\theta| = |E_{irrans}^{b}||\cos\theta'$$
Imposing $\theta = \delta$ we need
$$E_{in}^{b}|_{in} = E_{in}^{b}|_{in}|\sin\theta| = |E_{irrans}^{b}||\cos\theta'$$
Min that $|E_{in}^{b}|_{in}|\sin\theta| = |E_{irrans}^{b}||\cos\theta'$
As θ' is fixed by θ using snell's law, we have a pair of simultaneous equations for $|E_{irrans}^{b}|| ad||E_{irrans}^{b}|| ad'$

functions of $|\underline{E}_{in}^{0}|$ and θ Exercise Brewster angle: show that

$$\left|\underline{E}_{ref}^{0}\right| = 0 \leftrightarrow \theta + \theta' = \frac{1}{2}$$

The other polarisation: you can do all of this for \underline{E} perp to the board

Media 3: Magnetic

22 February 2012 12:34

As there are no magnetic monopoles, the magnetic field lines can't end

$$B_N^{in} = B_N^{out}$$

⇒

To find the behaviour of B_p consider the Amperian circuit as shown

Ampere's law $\oint \underline{B}d\underline{l} = \mu_0$ (no current enclosed)

In this case current loops normal to the board give a surface current that cuts through the amperian circuit Surface currents contribute to ampere's law

b

Recap

28 February 2012 10:03

Applying a magnetic field to a magnetic material \Rightarrow surface currents

As there are no magnetic monopoles, <u>B</u> lines can't end $\Rightarrow B_N^{out} = B_N^{in}$ Consider ampere circuit as drawn.

Ampere's law tells us that $B_p^{out} \neq B_P^{in}$ If we have a surface current perpendicular to board We can write $B_p^{in} = (1 + \chi)B_p^{out}$

Where χ is the magnetic susceptibility

For a simple (linear, isotropic) material, χ is a constant.

In this case, it makes sense to define $\mu_r = 1 + \chi(= constant)$

As far as maxwell's equations are concerned in simple magnetic materials,

 $\mu_0\to\mu_0\mu_r$ then ignore material (c.f. simple dielectric: $\epsilon_0\to\epsilon_0\epsilon_r$ then ignore material)

In general the response of the material is non-linear and $\chi \rightarrow \chi(B)$

Types of magnetic material

28 February 2012 10:18

The circulating electrons in any material constitute current loops. A single current loop is a very short solenoid \Rightarrow generates a magnetic dipole. Most electrons are in counter rotating pairs \Rightarrow dipoles cancel out.

An unpaired electron \Rightarrow net magnetic dipole.

1. Diamagnets

No permanent dipoles- "dire" magnets

2. Paramagnets

Contain permanent dipoles

Dipoles align with applied field

3. Ferromagnets

Contain permanent dipoles At low T, dipoles are not free to rotate

Diamagets

These materials contain no permanent dipoles

Do contain pairs of counter rotating electrons which act as current loops (little circuits) If we apply a magnetic field we will change the flux linked to the circuit/orbiting electron By faraday & lenz's, this induces an EMF which opposes the change

<u>Dodgy classical argument:</u> One electron speeds up, the other slows down. This produces a small net magnetic dipole which acts against the applied field and reduces it

<u>Quantum Mechanically</u>: the electron wave functions are distorted with the same effect The magnetic field inside is reduced $\Rightarrow \chi < 0$

Diamagnetic effect is small. Typically $\chi \sim -10^{-5}$

The diamagnetic effect is present for all materials- in para&ferromagnets it is completely swamped by alignment effects

Paramagnets

These contain permanent dipoles which are free to align under the competing effects of

1) The applied field [tries to align dipoles]

2) Thermal agitation [tries to disorder system]

For low $|\underline{B}|$ the response is linear

At high $|\underline{B}|$ all dipoles are aligned \rightarrow magnetic response "saturates"

On the linear (low $|\underline{B}|$) regime, large T \Rightarrow more agitation \Rightarrow less alignment \Rightarrow smaller χ In fact $\chi \sim c/T$, $c \sim constant$

Ferromagnets

High T: above "curie point" of material

Material behaves as a paramagnet

Low T

Dipoles are "sticky"

- dipoles resist alignment.
- If aligned by a big field tend to stay aligned when filed removed ⇒these are permanent magnets

Again, once all the dipoles are aligned, the material "saturates" and $\chi \rightarrow 0$ Peak for iron $\Rightarrow \chi \sim 10^4$

Another dodgy field

Textbooks like to define $\underline{B} = \mu_0 \mu_r \underline{H}$

Recall boundary condition $B_p^{in} = \mu_r B_p^{out}$ in terms of $\underline{H}: H_p^{in} = H_p^{out}$

Electrostatics

01 March 2012 12:09

Consider static \underline{E} with $\underline{B} = \underline{j} = 0$ Maxwell in this setting

$$\underline{\nabla} * \underline{E} = \frac{\rho}{\epsilon_0}, \underline{\nabla} \times \underline{E} = 0$$

Other two satisfied

Consider

$$V_p^{\underline{AB}} = -\int_{\underline{A}}^{\underline{B}} (a \log path P) \underline{E} d\underline{l}$$

<Path from A to B with paths p and p'> Now consider the related quantity

$$V_{p'}^{\underline{A}\underline{B}} = -\int_{\underline{A}(path \ p')}^{\underline{B}} \underline{E}d\underline{l}$$

Does the path matter?

$$\begin{split} V_{p}^{\underline{A}\underline{B}} - V_{p'}^{\underline{A}\underline{B}} &= -\left[\int_{\underline{A}(P)}^{\underline{B}} \underline{E}d\underline{l} + \int_{\underline{A}(p')}^{\underline{B}} \underline{E}d\underline{l}\right] \\ &= \oint_{P-P'} \underline{E}d\underline{l} = -\int_{S} (\underline{\nabla} \times \underline{E})d\underline{S} = 0 \\ &\quad (\text{as } (\underline{\nabla} \times \underline{E}) = 0) \\ &\qquad \oint_{p-p'} \square \text{ =integral along closed path } \underline{A} \to \underline{B} \text{ along P, then } \underline{B} \to \underline{A} \\ &\qquad \text{S is surface bounded by closed path} \end{split}$$

So we have

$$V_p^{\underline{A}\underline{B}} - V_{p'}^{\underline{A}\underline{B}} = 0$$

i.e. $V^{\underline{AB}}$ is path independent as long as $(\nabla \times \underline{E}) = 0 \underline{A} \& \underline{B}$ enter as the end points of the integration range

Now we can define the potential
$$V(x)$$
 via

$$V^{\underline{A}\underline{B}} = V(\underline{B}) - V(\underline{A}) = -\int_{\underline{A}}^{\underline{B}} \underline{E}d\underline{l}$$
(*)

We have the usual ambiguity about where V=0, sending $V(\underline{x}) \rightarrow V(\underline{x}) + const$ still satisfies (x)

Consider a special case

Let $\underline{B} = \underline{A} + \delta * \hat{\underline{x}}$ $\delta = \text{small parameter}$ $\hat{\underline{x}} = \text{unit vector in } \underline{x} \text{ direction}$ Using (*)

$$V(\underline{A} + \delta \underline{\hat{x}}) - V(\underline{A}) = -\int_{\underline{A}}^{\underline{A} + \delta \underline{\hat{x}}} \underline{\underline{E}} d\underline{\underline{I}}$$

As δ is small, \underline{E} is constant in the region of interest

$$\begin{pmatrix} \int \underline{E} d\underline{l} \to \delta \underline{E} \hat{\underline{x}} \end{pmatrix} \\ V(\underline{A} + \delta \hat{\underline{x}}) - V(\underline{A}) &= -\delta \underline{E} * \hat{\underline{x}} = -\delta E_x \\ E_x = x \ cmpt \ of \ \underline{E} \\ \text{Rewriting} \\ E_x &= -\left(\frac{V(\underline{A} + \delta \hat{\underline{x}}) - V(\underline{A})}{\delta}\right) \to -\frac{\delta V}{\delta x} \\ \text{As } \delta \to 0 \end{cases}$$

We have

$$E_x = -\frac{\delta V}{\delta x}$$

Similarly for y & z directions

$$\underline{E} = (E_x, E_y, E_z) = -\left(\frac{\delta V}{\delta x}, \frac{\delta V}{\delta y}, \frac{\delta V}{\delta z}\right) = -\underline{\nabla} V$$

$$\Rightarrow \underline{E} = -\underline{\nabla} V$$
As $\underline{\nabla} \times (\underline{\nabla} V) = 0$
For any V

$$\Rightarrow \underline{\nabla} \times \underline{E} = 0 \text{ is guaranteed if } \underline{E} = -\underline{\nabla} V$$
The remaining Maxwell eqn is

$$\underline{\nabla} * \underline{E} = \frac{\rho}{\epsilon_0}$$
Substitute in $\underline{E} = -\underline{\nabla} V$

$$\Rightarrow \nabla^2 V = -\frac{\delta}{\epsilon_0}$$

Uniqueness

If we specify V on a closed surface S and we specify ρ in the volume bounded by S then $\nabla^2 V = -\delta/\epsilon_0$

Has a unique solution in the volume bounded by S

Proof

Consider two solutions $V_a \& V_b$ $\Rightarrow \nabla^2 V_a = -\frac{\rho}{\epsilon_0}, \nabla^2 V_b = -\frac{\rho}{\epsilon_0}$ In the volume And $V_a|_S = V_b|_S$ as they both satisfy the boundary conditions Let $D = V_b - V_a$ and consider $\Gamma = \int_{volume} dV \underline{\nabla} (D \underline{\nabla} D)$
Firstly use divergence theorem

$$\Gamma = \int_{S} d\underline{S}(D\underline{\nabla}D) = 0 \text{ as } D = 0 \text{ on surface}$$

Secondly, take Γ and apply product rule

$$\Gamma = \int_{volume} dV \left((\underline{\nabla}D) * (\underline{\nabla}D) + D\nabla^2D \right)$$

Now

$$\nabla^2 D = \nabla^2 (V_b - V_a) = -\frac{\delta}{\epsilon_0} - \left(-\frac{\delta}{\epsilon_0}\right) = 0$$

This side gives

$$\Gamma = \int_{volume} dV \; (\underline{\nabla}D) * (\underline{\nabla}D)$$

Divergence theorem approach told us $\Gamma = 0$, putting both sides together

$$\Gamma = 0 = \int_{volume}^{VT} dV (\underline{\nabla}D) (\underline{\nabla}D) = \int_{volume}^{U} |\underline{\nabla}D|^{2}$$
$$|\underline{\nabla}D|^{2} \ge 0.$$
$$If \int_{volume}^{U} dV |\underline{\nabla}D|^{2} = 0$$
Theor $\overline{\nabla}D$, 0 successible on the set D .

Then $\nabla D = 0$ everywhere in the volume

We have $\nabla D = 0$ everywhere in the volume and D = 0 on the surface Two together \Rightarrow *D* = 0 everywhere in volume

 \Rightarrow *V*_{*a*} = *V*_{*b*} everywhere in volume

 \Rightarrow there can be only one solution

Recap: Electrostatics

13 March 2012 10:04

Static \underline{E} , no \underline{B} crucially then, $\underline{\nabla} \times \underline{E} = 0$ then we can use a potential i.e. set $\underline{E} = -\underline{\nabla}V$

$$\underline{\nabla} * \underline{E} = \frac{\rho}{\epsilon_0}$$
Then becomes
$$\overline{\nabla^2 V = -\frac{\rho}{\epsilon_0}}$$
(*)

If V is given on some closed surface S, there is a unique solution to (*) in the volume bounded by S 1. Known charge distribution

For a single point charge q.

$$V = \frac{q}{4\pi\epsilon_0 r}$$

r=distance from the charge
Let the charge be at position (a,b,c) and look at the potential at (x,y,z)
Using Pythagoras,
 $r^2 = (x - a)^2 + (y - b)^2 + (z - c)^2$

$$\Rightarrow V(x, y, z) = \frac{q}{4\pi\epsilon_0\sqrt{(x-a)^2 + (y-b)^2 + (z-c)^2}}$$

Exercise

Show that this solves $\nabla^2 V = -\rho/\epsilon_0$

2 steps:

a. Show that $\nabla^2 V = 0$ for $(x, y, z) \neq (a, b, c)$ [good practice]

b. Use divergence theorem in a small region around (a,b,c) to show that the normalisation correct [more subtle]

Collection of point charges

Just sum the potentials from each one

Continuous charge distribution

Break up into little bits, treat each as a point charge & integrate

The charge in this volume is $\rho(\tilde{x})dV$ Viewing this element as a point charge it gives a contribution to the potential of

 $\frac{\rho(\tilde{\underline{x}})dV}{4pi\epsilon_0|\underline{x}-\tilde{\underline{x}}|} \equiv \frac{\rho(\tilde{x},\tilde{y},\tilde{z})d\tilde{x}d\tilde{y}d\tilde{z}}{4\pi\epsilon_0\sqrt{(x-\tilde{x})^2+(y-\tilde{y})^2+(z-\tilde{z})^2}}$ To find the total potential, we add up all the contributions i.e. integrate over charge distrubution $V(\underline{x}) = \int_{\text{charge distribution}} \frac{\rho(\underline{\tilde{x}}) dV}{4pi\epsilon_0 |\underline{x} - \underline{\tilde{x}}|}$ *x* is fixed Integrate over $\tilde{x} \leftarrow$ positions of the charges 2. Charge distribution PLUS boundary conditions e.g. point charge q at (a,b,c) with an earthed conducting plate in x=0 plane Charge q x(a, b, c)

Method of images

If we can "mock up" the boundary conditions without changing the charge distribution in the region of interest, by uniqueness the solution to the new problem in the region of interest is THE solution to both problems

e.g. in our example, we're interested in the x>0 region \Rightarrow don't change charge distribution in x>0 region

Remove earthed plate and "mock up" boundary conditions Consider placing a charge -q at (-a,b,c)

$$\begin{array}{c} -q, x(-a, b, c) \\ O \end{array} \qquad O \end{array}$$

The potential due to two charges is V(x, y, z) $= \frac{q}{4\pi\epsilon_0} \left[\frac{1}{\sqrt{(x-a)^2 + (y-b)^2 + (z-c)^2}} - \frac{1}{\sqrt{(x+a)^2 + (y-b)^2 + (z-c)^2}} \right]$ This gives V(0, y, z) = 0

Other examples

1. Earthed plates in x=0 and y=0 planes with q at (a,b,c) in lower right quadrant

Magnetic Potential

14 March 2012 11:39

Helmoltz's theorem

1. Any vector field (\underline{H}) is uniquely determined by giving its divergence & curl in some region and its normal component over the boundaries

i.e. we need to specify $\nabla * \underline{H}$ and $\nabla \times \underline{H}$ in the volume and normal component on surface

Let $\underline{\nabla H} = S$

$$\underline{\nabla} \times \underline{\mathbf{H}} = \underline{\mathbf{c}}$$

2. If S and \underline{c} vanish at ∞ , \underline{H} can be written as

$$\underline{H} = -\underline{\nabla}\phi + \underline{\nabla} \times \mathbf{A}$$

 ϕ =scalar function

$$\underline{A}$$
 =vector function

We have already seen this in electrostatics: with $\underline{\nabla} \times \underline{E} = 0$ we used $\underline{E} = -\underline{\nabla} \nabla$ For the magnetic field, $\underline{\nabla} \cdot \underline{B} = 0$ <u>always</u> as there are no magnetic monopoles. Helmholtz \Rightarrow we can always write $\underline{B} = \underline{\nabla} \times \underline{A}$ \underline{A} is a vector potential

<u>Why use </u>*A*?

- $\underline{\nabla B} = \underline{\nabla} * (\underline{\nabla} \times \underline{A}) = 0$ is automatic
- It will help when we talk about radiation
- Charged particles couple to <u>A</u> in quantum mechanics

As $\underline{\nabla} * \underline{B} = 0$ we can use $\underline{B} = \underline{\nabla} \times \underline{A}$

<u>A</u> = magnetic vector potential (gauge) Useful mathematically Charged particles couple to *A* in quantum mechanics/quantum field theory

 \rightarrow Aharonov-Bohm effect

Electromagnetic potentials

As $\underline{\nabla} * \underline{B} = 0$, Helmholtz (2) lets us write $\underline{B} = \underline{\nabla} \times \underline{A}$ Now $\underline{\nabla} \times \underline{E} = -\underline{B}$ (maxwell 3) So we have $\underline{\nabla} \times \underline{E} = -\frac{d}{dt}(\underline{\nabla} \times \underline{A}) = -\underline{\nabla} \times (\underline{A})$ $\Rightarrow \underline{\nabla} \times (\underline{E} + \underline{A}) = 0$

Using Helmoltz (2) we can write $\underline{E} + \underline{A} = -\nabla V$ Generalisation of electrostatic potential to <u>any</u> situation In any situation we have

$$\underline{\underline{B}} = \underline{\nabla} \times \underline{\underline{A}}$$
$$\underline{\underline{E}} = -\underline{\underline{A}} - \underline{\nabla}\underline{V}$$

In terms of these potentials, $\nabla * \underline{B} = 0$ and $\nabla \times \underline{E} = -\underline{B}$ come for free (2/4 maxwell equations solved for free)

Gauge ambiguity persists Consider

$$\binom{V}{\underline{A}} \to \binom{V}{\underline{A}} + \binom{-\frac{\delta}{\delta t}}{\underline{\nabla}} f$$

f=arbitrary scalar function $\underline{\underline{B}} \text{ starts as } \underline{\nabla} \times \underline{\underline{A}} \\
\underline{\underline{B}} \to \underline{\nabla} \times (\underline{A} + \underline{\nabla}f) = \underline{\nabla} \times \underline{\underline{A}} \text{ as } \underline{\nabla} \times \underline{\nabla}f = 0 \text{ for any } \underline{f} \Rightarrow \underline{\underline{B}} \text{ is unchanged} \\
\text{Similarly } \underline{\underline{E}} \text{ starts as } -\underline{\underline{A}} - \underline{\nabla}V \\
\underline{\underline{E}} \to -\frac{\delta}{\delta t} (\underline{A} + \underline{\nabla}f) - \underline{\nabla} \left(v - \frac{\delta}{\delta t} \right) = -\frac{\delta}{\delta t} \underline{\underline{A}} - \underline{\nabla}V - \frac{\delta}{\delta t} \underline{\nabla}f + \underline{\nabla} \frac{\delta f}{\delta t} = -\frac{\delta}{\delta t} \underline{\underline{A}} - \underline{\nabla}V \\
\Rightarrow \underline{\underline{E}} \text{ is unchanged} \\
\text{"gauge transformation"}$

$$\binom{V}{\underline{A}} \to \binom{V}{\underline{A}} + \binom{-\frac{\delta}{\delta t}}{\underline{\nabla}} f$$

Leaves <u>E</u> and <u>B</u> unchanged

We have a choice of which V and \underline{A} to use to give a particular $\underline{E} \& \underline{B}$:

A good choice makes the maths easier

The physics is always the same

To do this we make a "gauge choice" by imposing a "gauge condition"

A gauge condition is some extra constraint (of our choice) which isn't invariant under the gauge transformation

Example: for radiation problems, the most convenient gauge choice is

$$\underline{\nabla} * \underline{A} + \frac{1}{c^2} \dot{V} = 0$$

Is this allowed? i.e. is it invariant under

$$\begin{pmatrix} V \\ \underline{A} \end{pmatrix} \rightarrow \begin{pmatrix} V \\ \underline{A} \end{pmatrix} + \begin{pmatrix} -\frac{\delta}{\delta t} \\ \underline{\nabla} \end{pmatrix} f$$

$$\underline{\nabla} * \underline{A} + \frac{1}{c^2} \dot{V} \rightarrow \underline{\nabla} * (\underline{A} + \underline{\nabla} f) + \frac{1}{c^2} \left(\dot{v} - \frac{\delta^2}{\delta t^2} f \right) - \underline{\nabla} * \underline{A} + \frac{\dot{V}}{c^2} + \left(\nabla^2 - \frac{1}{c^2} \frac{\delta^2}{\delta t^2} \right) f$$

$$\left(\nabla^2 - \frac{1}{c^2} \frac{\delta^2}{\delta t^2} \right) f \neq 0 \text{ for arbitrary } f$$

 \Rightarrow our gauge condition isn't invariant \Rightarrow it is a suitable gauge condition

<u>Radiation</u>

Using V and $\underline{A}, \nabla * \underline{B} = 0$ and $\nabla \times \underline{E} = -\underline{B}$ come for free, leaving $\nabla * \underline{E} = \frac{\rho}{\epsilon_0}$ and $\nabla \times B = \mu_0 (j + \epsilon_0 \underline{E})$

We rewrite these in terms of V and <u>A</u> using our gauge choice $\underline{\nabla} * \underline{A} + \frac{\dot{V}}{c^2} = 0$ (*GC*)

$$\begin{split} \underline{\nabla} * \underline{E} &= \frac{\rho}{\epsilon_0} \to \underline{\nabla} * \left(-\underline{A} - \underline{\nabla} V \right) = \rho / \epsilon_0 \\ & (\text{Using } \underline{E} = -\underline{A} - \underline{\nabla} V) \\ \Rightarrow \left(\frac{\ddot{V}}{c^2} - \nabla^2 V \right) = \frac{\rho}{\epsilon_0} \\ & (\text{Using (GC)}, \underline{\nabla} * \underline{A} = -\frac{\ddot{V}}{c^2} \\ \Rightarrow \left(\frac{1}{c^2} \frac{\delta^2}{\delta t^2} - \nabla^2 \right) V = \frac{\rho}{\epsilon_0} \\ & (\text{in this gauge}) \end{split}$$

Wave equation for V sourced by the charge density We also have $\underline{\nabla} \times \underline{B} = \mu_0 (\underline{j} + \epsilon_0 \underline{\dot{E}})$ Using definitions, this gives

$$\begin{split} \underline{\nabla} \times (\underline{\nabla} \times \underline{A}) &= \mu_0 \left(\underline{j} + \epsilon_0 \frac{\delta}{\delta t} \left(-\underline{A} - \underline{\nabla} V \right) \right) \\ \underline{\nabla} \times (\underline{\nabla} \times \underline{A}) \to \underline{\nabla} (\underline{\nabla} * \underline{A}) - \nabla^2 \underline{A} \text{ (using vector result)} \\ \Rightarrow \mu_0 \epsilon_0 \underline{\ddot{A}} - \nabla^2 \underline{A} &= \mu_0 \underline{j} - \underline{\nabla} (\underline{\nabla} * \underline{A}) - \mu_0 \epsilon_0 \underline{\nabla} \dot{V} \\ -\underline{\nabla} (\underline{\nabla} * \underline{A}) - \mu_0 \epsilon_0 \underline{\nabla} \dot{V} &= -\underline{\nabla} (\underline{\nabla} * \underline{A} + \mu_0 \epsilon_0 \dot{V}) \\ -\underline{\nabla} \left(\underline{\nabla} * \underline{A} + \frac{1}{c^2} \dot{V} \right) &= 0 \text{ By (GC)} \end{split}$$

In this gauge,

$$\left(\frac{1}{c^2}\frac{\delta^2}{\delta t^2} - \nabla^2\right) \binom{V}{\underline{A}} = \binom{\frac{\rho}{\epsilon_0}}{\mu_0 \underline{j}}$$

Wave equations for \dot{V} and \underline{A} sourced by charge and current densities respectively

Recap

27 March 2012 10:09

We can express \underline{E} and \underline{B} in terms of potentials V and \underline{A} $\underline{B} = \underline{\nabla} \times \underline{A}, \underline{E} = -\underline{\dot{A}} - \underline{\nabla}V$

Then

 $\underline{\nabla} * \underline{B} = 0$ and $\underline{\nabla} \times \underline{E} = -\underline{\dot{B}}$ come for free **Gauge Ambiguity**

<u>E</u> and <u>B</u> are unchanged if

$$\begin{pmatrix} V\\\underline{A} \end{pmatrix} \to \begin{pmatrix} V\\\underline{A} \end{pmatrix} + \begin{pmatrix} -\frac{\delta}{\delta t} \\ \underline{\nabla} \end{pmatrix}$$

Example

For radiation problems, gauge condition

$$\underline{\nabla} * \underline{A} = \frac{1}{c^2} \dot{V} = 0$$

Is useful

In THIS gauge, remaining maxwell eqns give

$$\underline{\nabla} * \underline{\underline{E}} = \frac{\rho}{\epsilon_0} \rightarrow \left(\frac{1}{c^2} \frac{\delta^2}{\delta t^2} - \nabla^2\right) V = \frac{\rho}{\epsilon_0}$$
$$\underline{\nabla} \times \underline{\underline{B}} = \mu_0 (\underline{j} + \epsilon_0 \underline{\underline{E}}) \rightarrow \left(\frac{1}{c^2} \frac{\delta^2}{\delta t^2} - \nabla^2\right) \underline{\underline{A}} = \mu_0 \underline{\underline{j}}$$

Take the eqn for V

$$\left(\frac{1}{c^2}\frac{\delta^2}{\delta t^2} - \nabla^2\right)V = \frac{\rho}{\epsilon_0}$$

And consider the static case, i.e. $\frac{\delta^2}{\delta t^2}V = 0$, we're left with $\nabla^2 V = -\frac{\rho}{\epsilon_0}$

We are back to electrostatics and we know the solution so we do an integral over the charge distribution

Some small element at $(\tilde{x}, \tilde{y}, \tilde{z})$, charge is $\rho(\tilde{x}, \tilde{y}, \tilde{z})d\tilde{V}$ $d\tilde{V} = volume \ element \ d\tilde{x}d\tilde{y}d\tilde{z}$ The contribution of this element to the potentiaal is $\frac{\rho(\tilde{x})d\tilde{V}}{4\pi\epsilon_0 d} \equiv \frac{\rho(\tilde{x})d\tilde{V}}{4\pi\epsilon_0 |x-\tilde{x}|}$

Summing over all the elements

$$V(\underline{x}) = \int \frac{\rho(\underline{\tilde{x}}) d\tilde{x} d\tilde{y} d\tilde{z}}{4\pi\epsilon_0 |\underline{x} - \underline{\tilde{x}}|}$$
We really need

$$\left(\frac{1}{2}\frac{\delta^2}{\delta^2} - \nabla^2\right) V = \frac{\rho}{2}$$

W

$$\left(\frac{1}{c^2}\frac{\delta^2}{\delta t^2} - \nabla^2\right)V = \frac{\rho}{\epsilon_0}$$

If the charges move, the information about any changes takes time to propagate to $us \Rightarrow we$ "see" the charge distribution as it was a light travel time ago. If fact the full solution is obtained by integrating over the sources with the appropriate time lag

$$\Rightarrow V(\underline{x},t) = \frac{1}{4\pi\epsilon_0} \int \frac{\rho\left(\underline{\tilde{x}}, t - \frac{|\underline{x} - \underline{\tilde{x}}|}{c}\right) d\tilde{x} d\tilde{y} d\tilde{z}}{|\underline{x} - \underline{\tilde{x}}|}$$

Similarly

$$\Rightarrow \underline{A}(\underline{x},t) = \frac{\mu_0}{4\pi} \int \frac{\underline{j}\left(\underline{\tilde{x}},t - \frac{|\underline{x} - \underline{\tilde{x}}|}{c}\right) d\overline{x} d\overline{y} d\overline{z}}{|\underline{x} - \underline{\tilde{x}}|}$$

Comments

- These are called "retarded" potentials
- Our arguments about look back in time motivates use of $t \frac{|\underline{x} \underline{\hat{x}}|}{c}$ but doesn't

proof the expressions givenYou can verify that the given expressions solve the equations [exercise for the enthusiastic]

Dipole Radiation

27 March 2012 10:32

In the gauge where

$$\begin{split} \underline{\nabla} * \underline{A} &= \frac{1}{c^2} \dot{V} = 0\\ \underline{A} & \text{V satisfy} \\ \left(\frac{1}{c^2} \frac{\delta^2}{\delta t^2} - \nabla^2\right) \begin{pmatrix} V\\ \underline{A} \end{pmatrix} = \begin{pmatrix} \frac{\rho}{\epsilon_0}\\ \mu_0 \underline{j} \end{pmatrix} \end{split}$$

These are solved by using "retarded" integrals

$$V(\underline{x},t) = \frac{1}{4\pi\epsilon_0} \int \frac{\rho\left(\underline{\tilde{x}}, t - \frac{|\underline{x} - \underline{\tilde{x}}|}{c}\right) d\bar{x} d\bar{y} d\bar{z}}{|\underline{x} - \underline{\tilde{x}}|}$$
$$\underline{A}(\underline{x},t) = \frac{\mu_0}{4\pi} \int \frac{\underline{j}\left(\underline{\tilde{x}}, t - \frac{|\underline{x} - \underline{\tilde{x}}|}{c}\right) d\bar{x} d\bar{y} d\bar{z}}{|\underline{x} - \underline{\tilde{x}}|}$$

Consider an aerial of length L carrying an oscillating current $I = I_0 \cos \omega t$ The aerial is centred at the origin, parallel to z-axis We will consider distances $\gg L$ [we call this a short areal $L \ll$ distances of interest]

As $r \gg L$ we can take $|\underline{x} - \underline{\tilde{x}}| = r$ for all elements of the areal If the wire has a cross-sectional area a, the current density

$$\underline{j} = \frac{I_0}{a} \cos \omega t \, \underline{\hat{z}}$$
So

$$\underline{A}(\underline{x},t) = \frac{\mu_0}{4\pi} \int_{\text{volume}} \frac{\underline{j}\left(\underline{\tilde{x}},t - \frac{|\underline{x} - \underline{\tilde{x}}|}{c}\right) \underline{\hat{z}} d\overline{x} d\overline{y} d\overline{z}}{|\underline{x} - \underline{\tilde{x}}|}$$
Setting $|\underline{x} - \underline{\tilde{x}}| = r$

$$\underline{A}(\underline{x},t) = \frac{\mu_0}{4\pi} \int_{\text{volume}} \frac{\underline{j}\left(\underline{\tilde{x}},t - \frac{r}{c}\right) \underline{\hat{z}} d\overline{x} d\overline{y} d\overline{z}}{r}$$

$$4\pi$$
 Jvolume r of wire r

$$\Rightarrow \underline{A}(\underline{x},t) = \frac{\underline{\hat{z}}\mu_0}{4\pi} \frac{I_0}{a} \frac{\cos\omega\left(t - \frac{r}{c}\right)}{r} \int_{\substack{\text{of wire} \\ (=aL)}} d\tilde{x} d\tilde{y} d\tilde{z} = \frac{\mu_0}{4\pi} I_0 l \cos\omega\left(t - \frac{r}{c}\right) \underline{\hat{z}}$$

Magnetic field Using

$$\underline{B} = \underline{\nabla} \times \underline{A} = \begin{bmatrix} \delta_y A_z - \delta_z A_y \\ \delta_z A_x - \delta_x A_z \\ \delta_x A_y - \delta_y A_x \end{bmatrix}$$

For this case, only $A_z \neq 0$
Also $\underline{A} = \underline{A}(r)$ so using the chain rule,

$$\underline{B} = \begin{pmatrix} \delta_y A_z \\ -\delta_x A_z \\ 0 \end{pmatrix} = \frac{dA_z}{dr} \begin{pmatrix} \frac{\delta r}{\delta y} \\ -\frac{\delta r}{\delta x} \\ 0 \end{pmatrix} = \frac{\mu_0 I_0 l}{4\pi} \left\{ \frac{\omega}{c} \sin \omega \left(t - \frac{r}{c} \right) \\ r^2 - \frac{\cos \omega \left(t - \frac{r}{c} \right)}{r^2} \right\} \begin{pmatrix} \frac{y}{r} \\ -\frac{x}{r} \\ 0 \end{pmatrix}$$

(Using $r = \sqrt{x^2 + y^2 + z^2} \Rightarrow \frac{\delta r}{\delta x} = \frac{x}{\sqrt{\Box}} = \frac{x}{r}$
 $\frac{\omega}{c} \sin \omega \left(t - \frac{r}{c} \right) \\ r$ Dominates at smaller-"induction field"
 $\frac{\cos \omega \left(t - \frac{r}{c} \right)}{r^2}$ Dominates at larger -"Radiation field"
Comments: \underline{B} is perpendicular to $\underline{\hat{Z}}$ and \underline{r}
Radiation field decays as $1/r$

Electric field

We will obtain the electric field from V

As we haven't specified the charge distribution, we can't do the integral to get V. instead we use the gauge condition

$$\begin{split} \underline{\nabla} \cdot \underline{A} + \frac{1}{c^2} \dot{V} &= 0 \Rightarrow \dot{V} = -c^2 \underline{\nabla} \cdot \underline{A} \\ &= -c^2 \frac{\delta A_z}{\delta z} \text{ as only } A_z \neq 0 \\ &= -c^2 \left(\frac{dA_z}{dr}\right) \frac{dr}{dt} \\ &= -\frac{c^2 \mu_0 I_0 L}{4\pi} \left\{ \frac{\omega}{L} \frac{\sin \omega \left(t - \frac{r}{c}\right)}{r} - \frac{\cos \omega \left(t - \frac{r}{c}\right)}{r^2} \right\} \frac{z}{r} \end{split}$$

Integrating with respect to time (dropping any integration constant) $\begin{pmatrix} r \\ r \end{pmatrix}$

$$V = -\frac{c^2 \mu_0 I_0 L}{4\pi} \left\{ -\frac{\cos \omega \left(t - \frac{T}{c}\right)}{cr} - \frac{\sin \omega \left(t - \frac{T}{c}\right)}{\omega r^2} \right\} \frac{z}{r}$$

Now we can use

$$\underline{E} = -\underline{A} - \underline{\nabla}V$$

$$\left(\text{remember } \underline{A} = \frac{\mu_0 I_0 l}{4\pi} \frac{\cos \omega \left(t - \frac{r}{c}\right)}{r} \underline{\hat{z}}\right)$$

$$\underline{E} = \begin{bmatrix} 0\\0\\\frac{\mu_0 I_0 l}{4\pi} \frac{\sin \omega \left(t - \frac{r}{c}\right)}{r} \end{bmatrix} + \frac{c^2 \mu_0 I_0 l}{4\pi} \left\{ -\sin \omega \left(t - \frac{r}{c}\right) \frac{\omega}{c^2 r} + O\left(\frac{1}{r^2}\right) \right\} \begin{pmatrix} \frac{x}{r}\\\frac{y}{r}\\\frac{z}{r} \end{pmatrix}^2}{r}$$
$$\Rightarrow \underline{E} = \frac{\mu_0 I_0 l \omega}{4\pi r} \sin \omega \left(t - \frac{r}{c}\right) \begin{bmatrix} -\frac{x^2}{r^2}\\-\frac{yz}{r^2}\\1 - \frac{z^2}{r^2} \end{bmatrix} + O\left(\frac{1}{r^2}\right)$$

This is cleaner in polar coordinates

$$x = r \sin \theta \cos \phi$$

$$y = r \sin \theta \sin \phi$$

$$z = r \cos \theta$$

$$\underline{B} = \frac{\mu_0 I_0 l \omega}{4\pi c r} \sin \omega \left(t - \frac{r}{c}\right) \sin \theta \left(\frac{\sin \phi}{-\cos \phi} \right)$$

$$\underline{E} = \frac{\mu_0 I_0 l \omega}{4\pi r} \sin \omega \left(t - \frac{r}{c}\right) \sin \theta \left(\frac{-\cos \phi \cos \phi}{0} \right)$$

$$\frac{f}{2} = \frac{\mu_0 I_0 l \omega}{4\pi r} \sin \omega \left(t - \frac{r}{c}\right) \sin \theta \left(\frac{-\cos \theta \cos \phi}{-\cos \theta \sin \phi} \right)$$

$$\left(\frac{\sin \phi}{-\cos \theta \cos \phi} \right) = \underline{\hat{e}}_{\phi}$$

$$\left(\frac{-\cos \theta \cos \phi}{-\cos \theta \sin \phi} \right) = -\underline{\hat{e}}_{\theta}$$

$$\sin \theta$$

 $\underline{E} \& \underline{B}$ are orthogonal to each other and direction of travel Energy flux is given by Poynting vector

 $\frac{1}{\mu_0} \underline{\underline{E}} \times \underline{\underline{B}} \rightarrow \text{Parallel to direction of travel}$ Averaging over a cycle, the energy flux is

$$\frac{1}{\mu_0} \left(\frac{\mu_0 I_0 \omega l}{4\pi r} \right)^2 \frac{\sin^2 \theta}{2c} = \bar{\rho}$$

To find the total power radiated, integrate energy flux over a sphere of radius r Total Power = $\int r^2 \sin \theta \, d\theta \, d\phi \, dr \, \bar{\rho} = \frac{I_0^2 l^2 \omega^2 \mu_0}{I_0^2 l^2 \omega^2 \mu_0}$

Total Power =
$$\int r^2 \sin \theta \, d\theta d\phi dr \, \bar{\rho} = \frac{l_0^2 l^2 \omega^2 \mu_0}{12\pi c}$$

Short Aerial

(length L) $I = I_0 \cos \omega t$ Integrate over $\underline{j} \to \underline{A}$ Use $\underline{B} = \underline{\nabla} \times \underline{A}$ to find $\underline{B} = \left(\frac{\mu_0 I_0 l \omega}{4\pi cr}\right) * \sin \theta \sin \omega \left(t - \frac{r}{c}\right) \left(-\underline{\hat{e}}\phi\right)$ Use Gauge condition to find V Then $\underline{E} = -\underline{A} - \underline{\nabla}V$ $\Rightarrow \underline{E} = \frac{\mu_0 I_0 l \omega}{4\pi r} \sin \theta \sin \omega \left(t - \frac{r}{c}\right) \left(-\underline{\hat{e}}\theta\right)$

 $\underline{E} \otimes \underline{B}$ are mutually perpendicular and both perpendicular to direction of travel. \Rightarrow We have an EM wave moving radially out from aerial Average energy flux per cvcle

$$\bar{p} = \frac{1}{\mu_0} \left(\frac{\mu_0 I_0 l\omega}{4\pi r}\right)^2 \frac{\sin^2 \theta}{2c}$$

Factor of $\sin^2 \theta \Rightarrow$ most power comes out normal to aerial, nothing parallel to aerial Total power radiated

$$= \int r^2 \sin\theta \, d\theta d\phi \bar{p} = \frac{I_0^2 l^2 \omega^2 \mu_0}{12\pi c}$$

This is often written in terms of dipoles. Consider the current flowing between two charge "reservoirs"

When the reservoirs hold charge $\pm Q$ this has a dipole moment $D = QL = D_0 \sin \omega t$ (defines D_0) Differentiate wrt time

$$\dot{D} = \dot{Q}L = \omega D_0 \cos \omega t = IL = (I_0 \cos \omega t)L \Rightarrow \boxed{I_0 L = \omega D_0}$$

Using $I_0 L = \omega D_0$ and $c^2 = 1/\epsilon_0 \mu_0$, the power becomes

$D_0^2 \omega^4$	
$12\pi c^3\epsilon_0$	

This is proportional to (Dipole moment)² and ω^4 Not expected to derive this in an exam, BUT should remember this result.

Recap

28 March 2012 11:07

In the gauge where

$$\underline{\nabla} * \underline{A} = \frac{1}{c^2} \dot{V} = 0 \underline{A} & \text{V satisfy} \\ \left(\frac{1}{c^2} \frac{\delta^2}{\delta t^2} - \nabla^2\right) \begin{pmatrix} V \\ \underline{A} \end{pmatrix} = \begin{pmatrix} \frac{\rho}{\epsilon_0} \\ \mu_0 \underline{j} \end{pmatrix}$$

These are solved by using "retarded" integrals

$$\begin{split} V(\underline{x},t) &= \frac{1}{4\pi\epsilon_0} \int \frac{\rho\left(\underline{\tilde{x}},t - \frac{|\underline{x} - \underline{\tilde{x}}|}{c}\right) d\bar{x} d\bar{y} d\bar{z}}{|\underline{x} - \underline{\tilde{x}}|} \\ \underline{A}(\underline{x},t) &= \frac{\mu_0}{4\pi} \int \frac{\underline{j}\left(\underline{\tilde{x}},t - \frac{|\underline{x} - \underline{\tilde{x}}|}{c}\right) d\bar{x} d\bar{y} d\bar{z}}{|\underline{x} - \underline{\tilde{x}}|} \end{split}$$

Classical Field Theory

24 April 2012 10:21

Is there any principle underlying Maxwell's equations? Yes- if we use action principles and Lagrangian (as in dynamics II last year) Dynamics in the Lagrangian Language In 1-dimension, the path x(t) taken by a particle travelling between $x_1(t_1)$ and $x_2(t_2)$ extremises the integral cta

$$\int_{t_1}^{t_2} L(x, \dot{x}, t) dt$$

Where L is the Lagrangian: L = Ke - Pe[NB: total energy=Ke+Pe]

The mathematical solution to extremising the integral is given by the Euler-Lagrange equations: solution when

 $\frac{\delta L}{\delta x} = \frac{d}{dt} \left(\frac{\delta L}{\delta \dot{x}} \right)$ Where $\frac{\delta}{\delta x}$ means a partial derivative wrt x

In this example x happens to be a coordinate

Mathematically, however, it is just the function of t that extremises the integral (path) For E&M we need to treat space & time on equal footing.

We generalise

$$\int_{t_1}^{t_2} dt \to \int dt \ d^3x$$

i.e. integral over spacetime

Lagrangian

$$L(x, \dot{x}, t) \rightarrow \mathcal{L}\left(f, \frac{\delta f}{\delta x}, \frac{\delta f}{\delta y}, \frac{\delta f}{\delta z}, \frac{\delta f}{\delta t}, x, y, z, t\right)$$

$$x = "path"$$

$$\dot{x} = derivatives of path wrt coords$$

$$t = coordinate$$

$$\mathcal{L} = lagrangian density$$

$$f = path$$

$$\frac{\delta f}{\delta x}, \frac{\delta f}{\delta y}, \frac{\delta f}{\delta z}, \frac{\delta f}{\delta t} = derivatives of "path" w.r.t. coordinates$$

$$x, y, z, t = coords.$$
We need to extremise

We need to extremise

$$\int dt d^3 x \mathcal{L}(...)$$

 \mathcal{L} is given by the physics

The mathematical solution is given by Euler-Lagrange

$$\frac{\delta \mathcal{L}}{\delta f} = \frac{\delta}{\delta x_i} \left(\frac{\delta \mathcal{L}}{\delta \left(\frac{\delta f}{\delta x^i} \right)} \right)$$

The pair of indices \Rightarrow summation convention. In this case, Einstein Summation convention where we sum over one "upstairs" and one "downstairs" index e.g.

$$G_{a}H^{a} \equiv \sum_{a=0}^{3} G_{a}H^{a}$$

Here G_{a} and H^{a} are 4-vectors
Indices are raised and lowered using the metric
 $H_{a} = g_{ab}H^{b}, G^{a} = g^{ab}G_{b}$
Where
 $g^{ab} = diag(-1, +1, +1, +1) = g_{ab}$
But what is \mathcal{L}

We know(in sensible $\epsilon = \mu_0 = 1$ units) the energy density in the <u>E</u> and <u>B</u> fields

 $is \frac{1}{2}(E^2 + B^2)$

Compare $E_{tot} = Ke + Pe$ before and L = Ke - PeThe lagrangian density is just the difference: $\mathcal{L} = \frac{1}{2}(E^2 - B^2)$ This doesn't have derivatives in \Rightarrow work with <u>A</u> and V instead

We're trying to encode Maxwell's eqns in an action principle Use euler-lagrange to find the functions that extremize ****** \underline{E} and \underline{B} can be "packaged into the field strength tensor

$$f = \begin{pmatrix} 0 & -E_x & -E_y & -E_z \\ E_x & 0 & -B_z & B_y \\ E_y & B_z & 0 & -B_x \\ E_z & -B_y & B_x & 0 \end{pmatrix} (*)$$

This is a tensor as it has nice transformation properties under Lorentztransformations

Working with 4-vectors $A^{\mu} = (V, A_x, A_y, A_z), \mu = 0, 1, 2, 3$ $\delta_{\mu} = \left(\frac{\delta}{\delta t}, \frac{\delta}{\delta x}, \frac{\delta}{\delta y}, \frac{\delta}{\delta z}\right)$ Then $f_{\mu_{\nu}} = \delta_{\mu}A_{\nu} - \delta_{\nu}A_{\mu}$ [exercise: show that this agrees with (*)] The lagrangian is $\mathcal{L} = \frac{1}{4} f_{\mu\nu} f^{\mu\nu}$ Where $f^{\mu\nu} = g^{\mu\alpha} f_{\alpha\beta} g^{\beta\nu}$ Apply Euler-Lagrange $\Rightarrow \delta_{\mu} (\delta^{\mu} A^{\nu} - \delta^{\nu} A^{\mu}) = 0$ $\nu = - \Rightarrow \nabla \cdot E = 0$ $\nu = 1,2,3 \rightarrow \nabla \times B = \dot{E}$ Vacuum Maxwell's eqns Exercise: work through this Remember $\nabla \cdot \underline{B} = 0$ and $\nabla \times \underline{E} = -\underline{B}$ come for free as we're using V, \underline{A} (remember c=1 here)

Comments

- 1. First step towards standard model
- 2. Beware signs- different metric conventions scatter minus signs around
- 3. This last section (i.e. "classical field theory") is non-examinable as started yesterday

Revision Lecture

02 May 2012 11:06

Gauge condition/invariance

$$\begin{split} \begin{pmatrix} V \\ \underline{A} \end{pmatrix} &\to \begin{pmatrix} V \\ \underline{A} \end{pmatrix} + \begin{pmatrix} -\frac{\delta}{\delta t} \\ \underline{\nabla} \end{pmatrix} \\ \\ \underline{\nabla} * \underline{A} + \frac{1}{c^2} \dot{V} &= 0 \\ \\ \underline{\nabla} * \underline{A} + \frac{1}{c^2} \dot{V} \to \underline{\nabla}. (\underline{A} + \underline{\nabla}f) + \frac{1}{c^2} \frac{\delta}{\delta t} \Big(\nabla - \frac{\delta}{\delta t} f \Big) \\ &= \Big(\underline{\nabla}\underline{A} + \frac{1}{c^2} \dot{v} \Big) + \Big(\nabla^2 - \frac{1}{c^2} \frac{\delta^2}{\delta t^2} \Big) f \\ & \Big(\nabla^2 - \frac{1}{c^2} \frac{\delta^2}{\delta t^2} \Big) f \neq 0 \text{ for arbitrary } f \end{split}$$

Snell's law etc

Parallel component of
$$\underline{E}$$
 is continuous
Just outside $(x = 0_{-}) = \text{just inside } (x = 0_{+})$
 $|\underline{E}_{0}^{in}|\cos\theta\exp\left[-i\omega t + \frac{i\omega}{c}(\cos\theta x + \sin\theta y)\right] + |\underline{E}_{0}^{ref}|\cos\bar{\theta}\exp\left[-i\bar{\omega}t + \frac{i\bar{\omega}}{c}(\cos\bar{\theta}x + \sin\bar{\theta}y)\right]$
 $= |\underline{E}_{0}^{trans}|\cos\theta'\exp\left[-i\omega't + \frac{i\omega'}{c'}(\cos\theta'x + \sin\theta'y)\right]$

This holds on the whole surface at any time \Rightarrow for all t & for all Consider y=0 form is $(\text{const})e^{-i\omega t}(\overline{\text{const}})e^{-\overline{\omega}t} = (\text{const}')e^{-i\omega't}$ For this to hold for all, we must have $\omega = \overline{\omega} = \omega'$ Similarly y dependence

$$(\text{const}) \exp\left[\frac{i\omega}{c}\sin\theta y\right] + (\overline{\text{const}}) \exp\left[\frac{i\overline{\omega}}{c}\sin\overline{\theta} y\right] = (\text{const'}) \exp\left[\frac{i\omega'}{c'}\sin\theta' y\right]'$$

To hold for all y, we need
$$\frac{\sin\theta}{c} = \frac{\sin\overline{\theta}}{c} = \frac{\sin\theta'}{c'}$$

Reflection law
$$\theta = \overline{\theta}$$

Snells law

$$\frac{\sin \theta}{\sin \theta'} = \frac{c}{c'}$$

Energy density
$$\frac{\epsilon_0}{2}\underline{E}.\underline{E} + \underline{B}.\frac{\underline{B}}{2\mu_0}$$