Electromagnetism II

31 January 2012
09:59

Syllabus
Maxwell's equations (Vacuum)<-Fundamental
Electromagnetic waves
Maxwell's equations (in media)<- useful approx. in some applications
Electrostatics
Magnetism
Field theory-> radiation from a dipole
Comments:
No new maths 3_3

Only new experiment
We will use: Vector calculus
Electricity & magnetism (matter & fields II)
Books
Introduction to electromagnetism- Griffiths
Feynman lectures in physics
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Vector Calculus- A Reminder

31 January 2012
10:19

Let us represent any position in this room by cartesian coordinates
If we measure the temperature at every point in the room, we get a scalar function T(x,y,z)
We can use the gradient operator to determine how this function changes
6T
ox
6T
8y
6T
6z
This is a vector quantity
VT gives the direction in which the function is changing most quickly and how quickly it is
changing
We have defined V= (

VXxV#VXV

grad T = VT =

s 8 i)
5x’ 8y’ 8z

We can use index notation
(VX V); = &;bVx
%
+1 if {i,j, k} ={1,2,3},{2,3,1},{3,1,2}
&ijk =311 if{i,j, k} =1{3,2,1},{2,1,3},{1,3,2}
0 all others

In (*) we have a single index on both sides
(*) holds for each value of I
lei=1,i=2 and i=3
(*) is 3 scalar equations
] and k indices are both paired=> both are summed over
Exercise= Expand (*) and confirm it agrees with non-index way

Divergence->sinks & sources
V+V =46V

Curl
[VX V] = &) 6;Vi

Curle Circulation
Divergence< Sources/sinks

We also have the grad operation. Given a scalar field f, we can generate a vector v using
v=Vf
[v; = 6if]
We can't get a vector field this way
In particular, ifv = Vf thenV X v =0

Proof
[V X v]; = €jk0jvi = &k 6k f
Recall
) _ o 0 .
Syéx’ 8x8yfe ¢
= 80k f = 6k6if
6]51( = 6k6]

&;jx =antisymmetricunder j & k
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[V X v]; = )00 f
We can re-label pair indicesj = a,k = b
[V X v]; = €iap0alpf
Re-labela = k,b = j
[V X v]; = &0k 6;f
This relabeling effectively swaps j < k
[VXv]; = Sikj5k5jf = —Sijk5j5kf = Sijk5j5kf =0
SoVXVFf=-VxVf=>VXxVFf=0

Divergence (Gauss) Theorem
Given a volume bounded by a surface S with an outward normal vector dS
Then

fdvz*z=fy*d5
Vv S

Stokes' Theorem
Given a closed path b with line element d! and any surface S bounded by b

frai= [@xv)ds
b S

PH-222 Page 3



And Now for Something Completely Different

07 February 2012
10:30

1. Gauss'law

Integral over any closed surface of E * dS = el
0

(charge enclosed)

dS is outward normal to surface
Let the charge density be p(x)
Charge enclosed=

= f dv p
v
Gauss' Law

1
—>fEd§=—dep
S €oJy

Divergence th'm

=de(2*§)

de V*E——]—O

€o
This must hold for any volume = integral must vanish

=>|VxE = ﬁ
€o
[M1]
2. No magnetic monopoles
No magnetic monopoles have been detected
=No sources/sinks for magnetic field
-
[M2]
3. Faraday & Lenz's Law
Whenever the magnetic flux linking a circuit changes, an EMF is induced in the circuit. The induced EMF
has magnitude proportional to the rate of change of flux and its direction is such as to oppose the
change.

A 4

Surface S bounded by b

Closed circuit
ol

As there are no magnetic monopoles, there is nothing for the B to start/end on

=every line passing through b must pass through the surface S (for ANY surface bounded by b)
We can use a surface integral to "count” the B lines

The magnetic flux through the circuit

@ = | Bds
S
The induced EMF is

f Edl
b
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fra= ()

Lenz's minus sign- EMF opposes change
Use Stoke's theorem

| Bar= [ @xpas
b s
Apply to faraday & Lenz

L(sz)*d§=—fS(i—f)*d§

6B
=>f(—+yxg)*d§=o

This must hold for ANY surface =integrand vanishes

6B 6B
> —+VXE=0=2|VXE=——
ot ot

[M3]

4. Ampere's Law
Integral of B * dl around any closed path = pyx (current enclosed)
Unfortunately, this isn't quite correct
Consider a wire carrying current I

by b
Closed path, b

o
I

Surface S boundfd

Capacitor

We can use the surface S to measure the current through the loop. If the current density isj

1= | jas
E
Ampere would give

| Brat=ro | as
b s
Problem: If our surface passes between the plates of a capacitor, there is no current.

Consider a parallel plate capacitor

If the total charge on each plate is +Q we have charge densities +o = i%

To find the electric field, we use Gauss' law.
Consider a "pill box" of area a

Charge enclosed = ga
Neglecting edge effects, E is perp to plates

| £dS = |Ela
surface of pillbox
By Gauss' law
o
|E| = —
€o
Now think of our Ampere's law surface that cuts down the centre of the capacitor

o Q
fEd.E = —A = — = charge on plate
s €o €o s

E

Taking time derivative, 5L

over the surface, for parallel plate capacitor

EofE*dé':I
s
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(shown last time)***
=we modify ampere's law

SE
| Bdl = [ ds+(j + o)
closed path S 3 ot

Extra bit is "displacement current
Integral is now independent of the surface
Ampere's Law corrected

del lfds (i+ ég)
= *

o Ho A ] T€o St
Now apply Stokes' theorem

OE
[Bat= [ @xByas =, [ as+(j+e)
b s s = ot
5E
= | dS*(po|jt €|~ VXB)=0
i ST €05t

This holds for any surface = integrand vanishes

. SE
=>|VXB =M01+ll060§
[M4]
Maxwell Equations
VxE = L
€o
[M1]
V+xB=0
[M2]
VXE = 0B
=T E T st
[M3]
VXB=yyj+ SF
VXDBE = Ho] T Ho€p 5t
[M4]

V*E:
VxB=0
VXE °B
XE=——
o ot
SE

Recap
We will need
(Y x (@ xv))
[VX (VX V)]; = )6 (VX 0k = &6 ekimO1Vm
= €ji €m0 61 Vm
= (6uSjm — Sim8j1)8;6, = 8,(8;v;) — (8;6))vi
=5V v) - (V)
=[VX (Y xv) = V(V *v) — V2|
Vacuum solutions of Maxwell equations
Start with [M3]

Take curl of both sides

Vx(VxE)—Vx( 55)
o TET 6&
Y(Y*E)—V2E=—6—t(yxli)

(V* E) = 0 because [M1]
(VX B) - use [M4]
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= —V?E = 6( 6E)
TVET T\ Hofosy

2
= <M0€0E—V2>E =0

Wave equation— light in a vacuum?
Consider a plane wave solution E = E; cos(x — vt)

—E = Eyvsin(x — vt)

St

62

WE = —Eyv? cos(x — vt)

2 2 2

V2E = 6_ + 8_ + 6_ E
= \6x?%  b6y? 6z%)

0E

5—; = —E, sin(x — vt)

5%E

S22 —E, cos(x — vt)

Sub into wave equation

—(uo€ov? — 1)Ey cos(x — vt) = 0

Of this is to hold for all x and t, we need
>

2=

v
Ho€o
Our solution
E = Eycos(x — ct)
Satisfies the wave equation. What about the other maxwell equations?
[M1]
V*E=0
(we're in a vacuum)

) ) )
= —E+—E, +—E, =0

ox oy 6z
6 E 0

= — =
Sx ¥

= (Eg)(—sin(x —ct)) =0
We need this to hold for all xand t
= (Ey), = 0 = E is perpendicular to direction of travel
We can arrange our axes so that

0
E= (Eo cos(x — ct))

0
Wave eqnv
V+E =0V
Now use
VXE= 0B
=TT st
To find B
i j k 0 0
> —=-VXE=—|— o ~|=- =
ot ox 8y 6z —E, sin(x — ct) E, sin(x — ct)

0 Egcos(x—ct) O
Integrating with respect to time

B = E, 0 + integration "constant”

—cos(x — ct)
c

Integration "constant” has no time dependence
- not relevant for the EM radiation
Handwavium FTW

0
E= (EO cos(x — ct))
0
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0
B = E 0
0
?cos(x —ct)

Wave eqnv
V+E =0/
V+B =0/
VXE=-2/
st
VXB= OE
VX B = lo€p St
We have a wave moving at speed c in the x- direction
E and B are mutually orthogonal and orthogonal to the direction of travel

57
Y )

Electric

field field
And god said:
veE=2 VB =0
€o
VXE= L VXB=uyj+ SE
YxXL=-—-- ¥ b = Ho) Hoeost
And THEN there was light
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Back to the Basics

09 February 2012
12:33

For E fields, consider a parallel plate capacitor

Q) = charge on

plate Plate area A

FF+H*++ + + +
I:il

To find E, we use a Gauss pillbox of area a
Gauss' law

1
jEdé' = — X (charge enclosed)
s €o

If the charge per unit area is ¢
oa o
|Ela =—= |E| = —
€o €o

If the plate spacing is d, the potential difference across the platesis V = |E|d = Z—d
0

If the plates have area L?, the total charge on the plate Q = oL?
And we have
y o4
L?€,
The work done in moving a charge dQ against a voltage V is VdQ
The work done in charging the capacitor is

QF Qr 0d d 219F d02
wD=| vdQ= g_sz_[Q_] _ 2%
0 o L€g Léegy | 2 0 2L%€gg
This energy is stored in the E field
Using
o @
|El=—=—0>
€y €olL
We have Q = €,L?|E|
WD—1 ( L2|E|)2—1dL2 |E|?
= 2 12e, €0 =4l

Now dL? is the volume in which the electric field exists
Energy stored in electric field=WD in charging capacitor

€
= 70 |E|? * (volume)

€
= |energy density in electric field = ?0 |E|?

By studying a capacitor, we find |energy density in electric field = % |E|?

Magnetic field energy density

For B fields, we can consider a solenoid.

Let solenoid have n turns per unit length and carry a current |
Solenoid is long& straight (length L) and area A

In cross section
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¢ Bdl = pyx(current enclosed)
For the ampere circuit drawn,
$ Bdl = |B|S
The current enclosed=nSI
Ampere's law
= |B|S = nSluy = |B| = poynl (Uniform throughout interior of solenoid)
The magnetic flux per turn of the coil is |B|A = ugnlA
The solenoid has length L = nL turns in total
= total flux through solenoid is n?uyLAI
If I changes, by faraday+lenz's law we have an EMF = —n?uyLAI

The work done in "energising” the solenoid is
2

: I
WD = [VdQ = [ VIdt = n?uyLA f]ldt = nz,uoLA?

The work done is stored in the magnetic field

= energy in magnetic field = LA %
0

LA=volume of solenoid= energy density in B field=57
0

In general, for E and B fields, total energy stored in fields is

E in field dV|(—=—EE BB
nergy in fie s—f (2 E 2“0)
Continuity equations
(The change in amount of stuff in a box)=(stuff put in)-(stuff taken out)
e.g. bank account
(Rate The change in amount of stuff in a box)=(Rate stuff put in)-(Rate stuff taken out)
Apply this to the energy in the E&B fields in some fixed volume V
[F the total energy is

e_fdv 5—:)

BB
:>8——de (eOEE——>

HUo
Recall in vacuum

VXE=-B
VX B =gk
1
=“—de(5(2><5)—5(2><§))
0
What is this?
Consider

V(E x B) = &;(E x B); = &[€;cEjBy]
= € 6;(E;By)

€iji is a constant
= Eijk(Bk(aiEj) + E](&Bk))
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Product rule
= Byeyij(6:E;) — Ej€jinSiBi

€xij —Cyclic order preserved in €; jx
€jix —1 pair of indices swapped — —1 factor
= Br(VX E), — E;(Vx B); =B * (VX E) — E (VX B) = V(E X B)| « starting point
6e 1 -1
—=—de(—2(§><5))=—fd§(§><5)
5t po Ko Js
Surface S bounds volume V —divergence theorem

;—1f5 dS(E x B) =Energy flux
0

O¢ _ fdsl(ExB)
St ) T T

Ho
Often, we can identify
(E X B)
Ho

With energy flux out of the box, but beware! e.g. consider a solenoid inside a
capacitor which gives static crossedE & B fields
(E X B)

p is called the Poynting vector
0

Energy Density & Flux in E.M. Waves
Recall simple EM wave

0

E = <E0 cos(x — ct))
0
0

0

B = E,
?cos(x —ct)

Energy Density:

£ BB & _, E§
—EE + — = —E§ cos?(x — ct) +
2 EE+o =7k cos“(x — ct) 27,

E& B fluctuate — we average over a cycle

cos?(x — ct)

<cos’(x—ct)> ==

2
<E Density> &ofs | _Eo
= =
nergy Density ) 2,
1
(Usingc2=—)
oMo
_foEg SoEg_SoEg
T4 4 2
Energy Flux

(can use Poynting vector here)
2

1 1 E; 5 R
<—EXE> = <——cos“(x —ct) > X%
Ho Ho €
X =unit vector in x direction

C1ES  (&FEd)
_ZMOCJ_C_C 2 X

< Energy Flux > = ¢ < Energy Density > X

Momentum
Einstein argument: Consider a spaceship in deep space (no external forces)
A light source on one side of the ship sends a flash of light across to a detector on the
other side
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Source
Dratector

Let the light pulse have total energy E
The source battery converts a tiny mass m = E /c? into energy to produce the light
At the far end, the detector converts the light back to chemical energy in its battery
= detector battery gets heavier by m = E/c?
If the ship doesn't move, the centre of mass of the system moves with no external
force acting
Resolution

The light carries momentum p in the direction of travel

When the light is emitted, the ship recoils with speed v,..oi; = P/M

M=mass of ship
If the detector is distance L from the source, the light travel time is just L/c

- : . PL
In this time, the ship moves a distance —
When the light is absorbed, it transfers its momentum back to the ship=>ship

stops
To keep centre of mass fixed,
Mass = distance moved = Mass*distance moved
« -
L PL
m = ——
Mc
P
m=—

c
Then the momentum carried by the light
= ¢ X (mass converted to produce the light)

E E
=c*—=>P=—
c c

For our simple wave
Energy density,u, <u > = %eoEg

Average energy flux c <u > %

Average momentum density < P > = %X
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Media 1: Simple

15 February 2012
11:49

"Stuff has got bits in it"- in particular, nuclei + electrons= charged particles that ca act as
sources of currents
Option 1: remember the bits and use

viE=2 V+B=0

€o

6B . OE
YXE=—E YXB=H01+U0€0§

Problem
There are many charges to worry about
Option 2: incorporate bulk effects of all the charges into modifications of the maxwell eqns then
ignore the presence of the charges
This is an approximation/fudge

Media 1: Conductors
Plan
Incorporate the bulk properties of the medium into our Maxwell's equations rather than
work at the individual electron level. - we will be making approximations
We will consider "simple" materials
Simple means
1. Linear —Response is proportional to stimulus
2. Isotropic »No preferred directions in the material = response is proportional to the
stimulus

Example
In a simple conductor the current density j is related to the applied field by

j = oF
o is conductivity

Now consider maxwell's equations in a conducting medium
Wehavep =0,j = dE

M1 becomes
VE=0,

.B=0,

<

= 1o (0E + €E)
We use the same game as we did in vacuum, i.e.
Take curl of VX E = —B
> VX (VXE) = -V x (B)

)
= V(V.E) - V’E = 5 *B)

VE=0
By m1

é i
= —V2E = == (ko0E + po€ok)

= po€ok — VE + p1o0E = 0
_ Q)
Uoo E= additional term due to conductivity
By analogy with SHM, the additional term introduces damping
We guess the form of the solution
E = Eyexp[(—1 + ik)kx — iwt]
k unit vector in direction of propagation
For k and w both +ve, the wave travels in the E direction
We take our guess and substitute into (*)
E=—iwE, E=(-iw)’E=—-w?E
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As
52 52 52
=—t+—+-—
6x?  O6y? 6z
We also need the spatial derivatives
Remember

E.a_c = szx + IEyy + kZZ

2

é - 2 ~
aﬁ = (A + ik)k,E, 522 (—A + ik)%k,E
= V2E = (—A+ ik)?(k2 + k2 + k2)E

kk=1
Plugging into (*)
to€o(—w?)E — (=4 + ik)?E + poo(—iw)E = 0
= (—wlugeg — (1 + ik)? — iwpyo)E = 0
If this is to hold for all t and x, we need
—w?ugeg — (=1 + ik)? — iwpgo = 0
Taking real and imaginary parts
Ho€ow? + 12 — k% =0

(real part)
=2k + pyow =0
We have two constants = we can look for k and 4 as a function of w
If we pick the frequency of light we shine onto a conductor
The wavelength and damping are fixed
From the Im part,

HoOow
- 22
Eliminate k from real part
HoO w)z

22

UoEqw? + A% = (
Multiplying by 412 =
A% + 422 (ugeqw?) — (Hgow)? = 0
Quadratic in A2
_ —4(ug€ow?) +/16(Upeow?)? + 16(pp€ow)?

8
7 sol'n to ensure 12 > 0

V16(ugow)?

8

= 22

For o large, 12 >

L g2 o Booo

2
Hoow ,#offw
> 1= , k=
2 2

For LARGE ¢
Frequency dependent dampening inside conductor
Higher frequency = faster attenuation
Field is only non-vanishing in the "skin" of the material
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Recap

21 February 2012
10:07

Media 1

Conducting Media

Simple = linear, isotropic

In a simple conductor

j = oE
o= conductivity
=modified wave equation
= attenuation
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Media 2: Dielectrics
21 February 2012

10:09

Now consider a medium which polarizes when an electric field is applied

> o
+ T + T
+ T + T
+ T + T
+ +
+ T + -
T T

______ > o

'—‘—‘—‘—'—‘*m + -‘—‘—'—‘—‘—%PM

As unlike charges attract, the applied electric field will ionize SURFACE charges

BULK of material remains neutral

The effect of the surface charges is to reduce the component of the electric field perpendicular to the surface
More general case

Vacuum

Consider an electric field at some angle to the surface of dielectric.

Firstresolve E into components parallel (E,,) and normal (E,) to surface
Aren A

] Dielectric

The normal component of the electric induces a surface charge on the dielectric
Drawing short fat Gaussian pillbox, we see that the surface charge only affects the normal component of E

fﬁd§ =—EN ., XA+EN xA= ei X (Charge Enclosed) = ; X (induced surface charge density)
S 0 0

—EN,. X A Flat face in vacuum

EN x A Flat face in dielectric
For a simple(linear response), the induced surface charge density is proportional to EN = EJ is some
fraction of EY,,
We can write

N
Eout

EY =
T
€, is the "relative permittivity" of the medium- material dependent constant

e >1

"Walking" an electron
Consider taking a charge (e.g. electron) for a walk around the tall thin (green) path (anticlockwise) as
shown. As the charge moves along the long sections of the path it experiences a force due to E, the
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component of the force parallel to the path is determined by Ei’; (Efut) inside (outside) the dielectric

The total work done in moving the charge around the complete circuit must be zero = work done on
the charge by Egut while on the outside is recovered on the inside by Ei’:l = H

out

That was the physics of dielectrics

Textbooks unfortunately then confuse matters by defining a range of new quantities (NOT EXAMINABLE- "an

unfortunate historic aberration"- WBP)
The first is sensible: Polarization
P = yeoE
x= susceptibility
[e, =1+ x]
The second is there to confuse: "electric displacement” D = €,E + P
For simple dielectrics D = €,E

Using
N

E
N __ “out N N _fgN — pN_pN
Ein - € ETEin - Eout Din - Dout
T

~~

Maxwell in a dielectric
Rule:
Send €, — €,€, and forget dielectric €, appears in Gauss' law and Ampere;s law
1. Consider gauss in a dielectric
Gauss

f EdS = 1/e
S

(charge enclosed)
A charge +Q pulls electrons towards it producing dipoles as shown
Now consider a gaussian surface- the ends of some dipoles will be inside whilse their +ve ends are
outside
= polarisation of the medium reduces the total charge inside the Gauss surface.
Applying gauss, we find a reduced electric field produced by a factor of €, *This what really happens*
We want to take this by modifying Gauss' law
If forget the medium and use

1
| zas =
S €r€p

We get the same answer as doing it properly i.e. sending €, — €,€, "fakes" it for Gauss' law
2. Dielectric Ampere's law

jgﬁdl = .Uof(j + Eog)dﬁ
b s

€oE=displacement current

}_ %
b S. %
Sy

We introduced the displacement current s that the right hand side of ampere's law gave the same
answer for surface S; and surface S,. Now consider filling the capacitor with a dielectric= E
inside capacitor reduces electric field by a factor €,- while the changing polarisation of the
medium generates a current across S,

Again, we want to fake this
Using
§ Bl = i | (j + ereolt)ds
S

Allows us to forget the dielectric
Again, we send €, — €,.€¢ and forget the dielectric
3. Waves in dielectrics
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A constant is a constant = we get a simple wave equation again
The wave space in a vacuum, ¢ = 1/,/€xl1, = wave speed in the dielecric is ¢’ = 1/+/€,€olty = ¢//€F

c

In optics the refractive index n = - =Ve

Consider light shining on to a slab of dielectric (e.g. glass) with polarisations as shown- all E fields are
in the plane of the bond

iw
E; = E exp <—iwt + s (cosBx + sin Hy))
0 1) _ s
Erer = Erepexp| —iwt + ” (—cos fx + sinfy)

iw'
Etrans = Efrans €Xp (_iwlt + o (cos @'x + sin 9’)’))

We know that El.r;l = Egut i.e. parallel component of E is continuous across the boundary
= |Ejn| cos 6 + |Eref| cosf |x=0‘ = |E¢rans| cos 6’ |x=0+
x = 0" =just below 0
x = 0*=just below 0
Substituting for the 3 waves

0 ) lw 0 _ L o .
= |Ein| cos 6 exp (—La)t + Tsm Qy) + |Etmns| cos 6 exp (—Lwt + Tsm Hy)

0 12 .o l.(l)’ . ’
= |Eref|c059 exp| —iw't + 7 sin8'y

This must hold for all tand all y
At y=0, this takes the form

(const)e @t + (const)e i@t = (const’)e @'t
For this to hold for all values of t, weneed w = @ = '’
Now consider y # 0 and cancel common factor of e~ lwt

iw iw _ iw
(const) exp l? sin ByJ + (const) exp l? sin ByJ = (const’) exp IT sin H’yJ
For this to hold for all y we need
sin@ sinf sin6’

c . c c’
>0=0
c sin @ _ _
c’_sine’_\/e—r_n
Snell's law

Imposing parallel component continuous gave
|E3,| cos 6 + |Er0ef| cos @ = |Edqns| cos 0’
We also have

Il\)lut
in _ out _ in
Ey' = = Ey** = €¢,.Ey
r
0| i 0 soa 0 . ,
= —|EJ,|sin6 + |Epf|sin@ = —€,|Efrqns| sin 6

Imposing 8 = 6 we need
(IE&| + |Ererl) cos 0 = |Efrans| cos 6"
(—|Eq| + |EPes|) sin 0 = €| Egrans| cos 6’
As 0’ is fixed by 6 using snell's law, we have a pair of simultaneous equations for |Er0ef| and |E,_9mn5| as
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functions of |[E,| and 6
Exercise
Brewster angle: show that

T
|E1£)ef|:0(_>9+9,:§

The other polarisation: you can do all of this for E perp to the board
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Media 3: Magnetic

22 February 2012
12:34

In a dielectric, E induces a surface charge

In a magnetic material, B induces a surface current

Magnetic field aligns current loops

Net surface current

/
SO

N

5,

,H
C
-
) O
L) Q

J‘/F\ J‘/-H\ El E E 1
A A A Q \_ @
AT, :

i \H \

N

™,

AN
Magnetic material S

~
-
-
\*

AN

- *,
/ Current loop-
in the bulk: no net current circulating electrons

Boundary conditions

! .

Magnetic Material

As there are no magnetic monopoles, the magnetic field lines can't end
-
To find the behaviour of B, consider the Amperian circuit as shown

Ampere's law ¢ Bdl = p, (no current enclosed)
In this case current loops normal to the board give a surface current that cuts through the amperian circuit

Surface currents contribute to ampere's law
b
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Recap

28 February 2012
10:03

Applying a magnetic field to a magnetic material = surface currents

Boundary Conditions

out
By

Magnetic Material

As there are no magnetic monopoles, B lines can't end= M
Consider ampere circuit as drawn.

Ampere's law tells us that BJ*! # B

If we have a surface current perpendicular to board

We can write B)"* = (1 + y)BJ"*

Where y is the magnetic susceptibility

For a simple (linear, isotropic) material, y is a constant.
In this case, it makes sense to define p,. = 1 + y(= constant)
As far as maxwell's equations are concerned in simple magnetic materials,
Uo = UM, then ignore material (c.f. simple dielectric: €, = €,€, then ignore
material)
In general the response of the material is non-linear and y — y(B)

PH-222 Page 21



Types of magnetic material

28 February 2012
10:18

The circulating electrons in any material constitute current loops. A single current loop is a very
short solenoid = generates a magnetic dipole. Most electrons are in counter rotating pairs =
dipoles cancel out.
An unpaired electron = net magnetic dipole.
1. Diamagnets
No permanent dipoles- "dire" magnets
2. Paramagnets
Contain permanent dipoles
Dipoles align with applied field
3. Ferromagnets
Contain permanent dipoles
Atlow T, dipoles are not free to rotate

Diamagets
These materials contain no permanent dipoles
Do contain pairs of counter rotating electrons which act as current loops (little circuits)
If we apply a magnetic field we will change the flux linked to the circuit/orbiting electron
By faraday & lenz's, this induces an EMF which opposes the change
Dodgy classical argument: One electron speeds up, the other slows down. This produces a
small net magnetic dipole which acts against the applied field and reduces it
Quantum Mechanically: the electron wave functions are distorted with the same effect
The magnetic field inside is reduced = y < 0
Diamagnetic effect is small. Typically y~ — 10~°
The diamagnetic effect is present for all materials- in para&ferromagnets it is completely
swamped by alignment effects
Paramagnets
These contain permanent dipoles which are free to align under the competing effects of
1) The applied field [tries to align dipoles]
2) Thermal agitation [tries to disorder system]|
For low |B| the response is linear
At high|B| all dipoles are aligned — magnetic response "saturates”
On the linear (low |B|) regime, large T = more agitation = less alignment = smaller y
In fact y~c/T, c~constant
Ferromagnets
High T: above "curie point" of material
Material behaves as a paramagnet
Low T
Dipoles are "sticky"
- dipoles resist alignment.
- Ifaligned by a big field tend to stay aligned when filed removed
=these are permanent magnets
Again, once all the dipoles are aligned, the material "saturates" and y = 0
Peak for iron = y~10*
Another dodgy field
Textbooks like to define B = pgu,-H
Recall boundary condition B} = p, Bg“* in terms of H: H;* = H3"*
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Electrostatics

01 March 2012
12:09

Consider static E withB = j = 0
Maxwell in this setting

ViE=2 yxE=0
€o
Other two satisfied
Consider

B
VPAB — _f Edl
A (along path P)

<Path from A to B with paths p and p'>
Now consider the related quantity

B
VA-B — _-f Edl
A(pathp")

Does the path matter?

B B
f Edl + f Edl]
A(P) A(p")

VAB _yAB _ _[

=5E Edi=—f@xg)d§=o
p-p' S
(as (V x E) = 0)

S is surface bounded by closed path
So we have
AB _ ,AB _
Vp - Vp/ - O
i.e. V4B is path independent as long as (V X E) = 0 A&B enter as the end points of

the integration range
Now we can define the potential V(x) via
B

Ve = v(®) - V() = - | Edl
A
@)
This defines the electrostatic potential.
We have the usual ambiguity about where V=0, sending V' (x) — V(x) + const still satisfies (x)

Consider a special case
LetB=A+8§*X
6 = small parameter
X= unit vector in x direction
Using (*)

A+6%
va+sn-va =- [ Ea

A
As § is small, E is constant in the region of interest

( [pa- 6@2)

V(A+6%)—V(A) = —6E+X = —6E,
E, =xcmptof E
Rewriting
V(A +6%)-V(4) 4
= — [ —
6 ox

X

Asd§ -0
We have
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Similarly for y & z directions
6V 6V 8V
E = (Bo By Br) = )

85x’ 6y’ 6z
- [E==w]
AsVx (VV) =0
For any V
= VX E = 0is guaranteed if E = —VV
The remaining Maxwell eqn is

veE="
€o
Substitute in E = —VV
1)
=V =——
€o

Uniqueness
If we specify V on a closed surface S and we specify p in the volume bounded by S then

VZV = _6/60
Has a unique solution in the volume bounded by S

Proof
Consider two solutions V, &V,
p p
>V, = ——,V2), = ——
a €o b €o

In the volume
And V, | = V|5 as they both satisfy the boundary conditions
Let D =V, — V, and consider

= f dVV (DVD)
volume
Firstly use divergence theorem
= de(DYD) = 0as D = 0 on surface
S

Secondly, take I' and apply product rule

r= dV((VD) = (VD) + DV?D)
volume
Now
) 5
VD =V2(V,—-V)=——— (——) =0
€o €o

This side gives
r=[  avp)«@p)
volume

Divergence theorem approach told us
[' = 0, putting both sides together

r=0= f dv (VD) (VD) = f |VD|?
volume volume
IVD|? = 0.
If dv|vD|*> =0

volume
Then VD = 0 everywhere in the volume

We have VD = 0 everywhere in the volume and D = 0 on the surface
Two together = D = 0 everywhere in volume
=V, =V, everywhere in volume
= there can be only one solution
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Recap: Electrostatics

13 March 2012
10:04

B crucially then, V X E = 0 then we can use a potential i.e. set E = —VV
o)

€o
Then becomes

V2 = — L
€o
™
If V is given on some closed surface S, there is a unique solution to (*) in the volume bounded by S
1. Known charge distribution

For a single point charge q,

StaticE, n

o

E,
V

It=
I

4meyr
r=distance from the charge
Let the charge be at position (a,b,c) and look at the potential at (x,y,z)

Using Pythagoras,
r2=(x—a)>+ (@ —b)*+ (z—c)?
=>V(x,y2z)= a
4meg/(x —a)2 + (y — b)2 + (z — ¢)?
Exercise
Show that this solves V2V = —p/¢,
2 steps:

a. Show that V2V = 0 for (x,y,2) # (a, b, c) [good practice]
b. Use divergence theorem in a small region around (a,b,c) to show that the normalisation
correct [more subtle]
Collection of point charges
Just sum the potentials from each one
Continuous charge distribution
Break up into little bits, treat each as a point charge & integrate

A

X

V(x,y,z)

Consider a small element of the charge distribution at position £

The volume dV = dxdydx

The charge in this volume is p(Z)dV

Viewing this element as a point charge it gives a contribution to the potential of
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pE)dV p(X,y,2)dxdydz

4pieolx — X1 ameyJ(x — )2 + (v — 9)2 + (z — 2)2
To find the total potential, we add up all the contributions i.e. integrate over charge distrubution
Ve = [ @y
charge distribution 4pieg lx — ]|
x is fixed
Integrate over X < positions of the charges
2. Charge distribution PLUS boundary conditions
e.g. point charge q at (a,b,c) with an earthed conducting plate in x=0 plane

Charge q x(a, b, c)

O

et =

.

x = 0 plane

Method of images
If we can "mock up"” the boundary conditions without changing the charge distribution in
the region of interest, by uniqueness the solution to the new problem in the region of
interest is THE solution to both problems
e.g. in our example, we're interested in the x>0 region = don't change charge distribution
in x>0 region
Remove earthed plate and "mock up" boundary conditions
Consider placing a charge -q at (-a,b,c)

—q,x(—a,b,c) q,x(a,b,c)

The potential due to two charges is
V(x,y,2)
. q 1 B 1
ey [J(x—a)2+ (y—b)2+(@z—c)? Jx+a)2+ @y —b)2+(z—c)?
This gives V(0,y,z) = 0
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V->0asx,yz—> x

In the x>0 region, we just have charge q at (a,b,c)

By uniqueness, this is the potential in the x>0 region of the original problem
Original problem:

E
- —:::\::\\
-ve surface ~—;\\O
charge S o 1
inducted =~

by q

Electric field lines must hit plate at 90 deg as E = 0 in the plate and Ej,4,4;5¢; IS continuous
Image problem

The image charges must be outside the region of interest
Other examples
1. Earthed plates in x=0 and y=0 planes with q at (a,b,c) in lower right quadrant
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Magnetic Potential

14 March 2012
11:39

Helmoltz's theorem
1. Any vector field (H) is uniquely determined by giving its divergence & curl in some region
and its normal component over the boundaries
i.e. we need to specify V * H and V X H in the volume and normal component on

surface
LetVH =S
VxH=c

2. IfSand ¢ vanish at oo, H can be written as
H=-Vp+VxA
¢ =scalar function
A =vector function
We have already seen this in electrostatics: with V X E = 0 we used E = —VV
For the magnetic field, V. B = 0 always as there are no magnetic monopoles.
Helmholtz = we can always write B =V X A
A is a vector potential

Why use A4?
e VB =V=*(VXxA)=0isautomatic
e [t will help when we talk about radiation
e (Charged particles couple to 4 in quantum mechanics

AsV+B=0wecanuseB =V XA
A= magnetic vector potential (gauge)
Useful mathematically
Charged particles couple to A in quantum mechanics/quantum field theory
—Aharonov-Bohm effect
Electromagnetic potentials
As V * B = 0, Helmholtz (2) lets us write B =V X A
NowV x E = —-B
(maxwell 3)
Sowehave VXE = —%(YXA) = -V x(4)
=>Vx(E+A)=0
Using Helmoltz (2) we can write E + A = —VV
Generalisation of electrostatic potential to any situation
In any situation we have

E=—-A-VV

In terms of these potentials, V * B = 0 and V x E = —B come for free (2/4 maxwell
equations solved for free)

Gauge ambiguity persists

Consider

1)
()= () + (")
A A v
f=arbitrary scalar function
B startsasVx 4
B>V X (A+VYf)=VxAasVxVf =0 foranyf= B isunchanged
Similarly E starts as —4 — VV

Eo-Sasy v( 5) 0 4 A% 5v +v5f %
ﬁ_— — — — = —— — — — —
E- -5 @+¥f) V5t st Vi+Vsr= 54 Y

= E is unchanged
"gauge transformation”
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(- (5)
B R v

Leaves E and B unchanged
We have a choice of which V and 4 to use to give a particular E&B:

A good choice makes the maths easier
The physics is always the same
To do this we make a "gauge choice" by imposing a "gauge condition"
A gauge condition is some extra constraint (of our choice) which isn't invariant under the
gauge transformation

Example: for radiation problems, the most convenient gauge choice is

1.
Y*A'F—ZV:O
Cc

Is this allowed? i.e. is it invariant under
o)
(4)~ () (‘)
- +| 6t|f
A A v
62

VA+1V V(A+Vf)+1 ; VA+V+ V2 Lo
* —V > V=% —_ —_——_— —V % —_ —_——_——
- = c? - = c? v 6t2f - = c? c?6t2 f

c? 5t
= our gauge condition isn't invariant= it is a suitable gauge condition

, 1 52 _
V¢ ——=—|f # 0 for arbitrary f

Radiation
UsingVand A4,V*B =0 andV X E = —B come for free, leaving V * E = Eﬂ and
0

VXB = .Uo(l‘*‘EoE)
We rewrite these in terms of V and 4 using our gauge choice V * A + CKZ =0(G0)

VrE=L Vs (=A-VV) = p/e,
0

(Using E = —A — VV)
i
c €0
o

(Using (GC), Vx4 = —%

c2

(in this gauge)
Wave equation for V sourced by the charge density
We also have V X B = o (j + €E)
Using definitions, this gives
, é .
VX (VXA =u [+€oa(—A—YV)
V X (V x A) - V(V * A) — V2A (using vector result)
= po€od — V2ZA = pioj — V(Y A) — po€oVV
—V(V* A) — po&oVV = ~V(V * A + o€oV)
1.
~v(V+4+V)=0By (GO)
In this gauge,

1 62 1% ﬁ
a5z v (A) =|
¢ ot - HoJ

Wave equations for V and 4 sourced by charge and current densities respectively
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Recap

27 March 2012
10:09

We can express E and B in terms of potentials V and A
B=VYXAE=-A-VV
Then
V+B =0 and VX E = —B come for free
Gauge Ambiguity
E and B are unchanged if

-+ (%)

\\\\\

Example
For radiation problems, gauge condition

Y*A=—2V=O
C

[s useful
In THIS gauge, remaining maxwell eqns give

p (18° p
E=L5——_w2ly=2L
V+E EO_><CZ6t2 V) €0

Take the eqn for V
1 62 p
—— -V |V =—
<cz 5t? > €0
2

. . . 1) ' .
And consider the static case, i.e. 52 V = 0, we're left with V2V = — Eﬁ
0

We are back to electrostatics and we know the solution so we do an integral over the
charge distribution
Some small element at (%, 7, 2), charge is p(¥, ¥, 2)dV
dV = volume element dxdydz
The contribution of this element to the potentiaal is
pDdV _  p(@)dV
dmeod ~ 4mey|x — X|
Summing over all the elements
Vix) = f p(a_c)dxdnyz
dmeglx — X|
We really need

1 62 p
IR v /A =
<cz5t2 v >V €0

If the charges move, the information about any changes takes time to propagate to
us = we "see" the charge distribution as it was a light travel time ago. If fact the full
solution is obtained by integrating over the sources with the appropriate time lag

p (g P lx= ’—“') dxdydz
=>V(ixt) = o
(0 47'[60.[ lx — |
Similarly
j (g polx= ’—") dxdydz
Ho [~ c
= A()_C' t) = _f po
41 lx — X|
Comments
e These are called "retarded" potentials
e Our arguments about look back in time motivates use of t — lx;fl but doesn't
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proof the expressions given
* You can verify that the given expressions solve the equations [exercise for the
enthusiastic]
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Dipole Radiation

27 March 2012
10:32

In the gauge where
1.
c
A &V satisfy

1 62 1% ﬁ
a5V (A) ={
¢t ot - Hoj

These are solved by using "retarded" integrals

p (9_? P lx= ’—") didydz
Vixt) = f ¢
~ 4me, lx — |
j (a_z P ’—“') dxdydz
Ho [ = c
A()_Ci t) = _f ~
4 lx — %I

Consider an aerial of length L carrying an oscillating current I = I, cos wt
The aerial is centred at the origin, parallel to z-axis
We will consider distances > L [we call this a short areal L « distances of interest]

r>1L
Z,

|

]
|
]

L - X
MM
N_MMM i
M"“‘M
—
L/2
We know
. 1 A
](3_c,t— =—= )dxdydz
Alx,t) = ﬂf_ <
4 lx — X

Asr > L we can take |x — X| = r for all elements of the areal

If the wire has a cross-sectional area a, the current density
o .
J=—coswtz
- a

So

j(z
_ Ko
ﬂ&ﬂ—4mLmM

of wire
Setting |x — %| =7

o T\ 5 g g g
o l()_C,t—E) zdxdydz
Ao =22 .

of wire
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= A(x,t) =—— dxdydz = —1I,l t——)2
(x, 1) ir a " J;g;w;rlz xdydz 0 cosw( )g
(=aL)
_ Ko AW
A= Elolcosw(t _E)Z
Magnetic field
Using

8,A, — 6,4,

B=VXA=|6,4y— 064,

0,Ay — 8, A,

For this case,only 4, # 0
Also A = A(r) so using the chain rule,
or

y
B_<53’AZ)_dAz @ _MOIOI{%sinw(t—g) cosw(t—g)} r

—0x4, dr or 4 T Bl r? -z
0 T Sx r
0 0

) _ 2 2 2 S_T_L—E
(Usingr = yx* +y*+2° > =7==1
[ r

r

r
cos w (t — E)
r2
Comments: B is perpendicularto Z and r
Radiation field decays as 1/r

Dominates at smaller-"induction field"

Dominates at larger -"Radiation field"

Electric field
We will obtain the electric field from V
As we haven't specified the charge distribution, we can't do the integral to get V. instead we use the gauge

condition
1. .
Z-A'F?V:O::»V: —c2V.A
L lyA, #0
=—c 57 asonly A,
(g
dr /dt
. r r

__ CZ.“OIOL {2 sin w (t — E) _ Ccos w (t — E)}E

4 L r 72 r

Integrating with respect to time (dropping any integration constant)

. _CZMOIOL{_cosa)(t—g)_sinw(t—g)}z
r

41 cr wr?
Now we can use
E=-4A-W
T
J.lcosw(t —=
<rememberé='uo0 ( C)Z)
4 r
X
0 r
0 cZuolyl N W 1|y |z
B e e ot 1
- yololsmw(t—g) AT smw( c)czr r2/)| r
z
4 r -
T
X2
72
_ kololw r yZ 1
=>FE = - sma)(t—z) —z +0(r_2)
72
-2

This is cleaner in polar coordinates
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x =7rsinf cos ¢
y =7rsinfsing

z=rcosH
_ tololw ry . sin
B = ry— smw(t—;)sm@(—cosd)
I.lw r —cosfcos¢
E=#O—Osinw(t——)sin9<—c0595in¢
4mtr c .
sin @

—cos 6B cos ¢
<—cos€sin¢) = —éy
sinf

E&B are orthogonal to each other and direction of travel
Energy flux is given by Poynting vector

1
#—E X B — Parallel to direction of travel
0
Averaging over a cycle, the energy flux is

1 (,uoloa)l)z sin? 6

H_o 4mtr 2c p
To find the total power radiated, integrate energy flux over a sphere of radius r
Total P —fz' 6 dodedr 5 = 0L Ho
otal Power = | r“sin ¢dr p = Tome
Short Aerial
(length L)

I =1y coswt
Integrate over j — A
Use B =V X A to find

Mololw> . . r n

B = 0 t——)(—

( amey ) * SinOsinw ( c) (—éd)
Use Gauge condition to find V

Then E = —-A—-VV
lhlw r
Holo sin 8 sin w (t — —) (—é0)
r c
E&B are mutually perpendicular and both perpendicular to direction of travel.
=We have an EM wave moving radially out from aerial
Average energy flux per cycle
_ 1 (uololw>2 sin” @
p= Uo \ 4nr 2c
Factor of sin? § = most power comes out normal to aerial, nothing parallel to aerial

Total power radiated

=>E=
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1212w,

12mc
This is often written in terms of dipoles. Consider the current flowing between two charge
"reservoirs”
When the reservoirs hold charge +Q this has a dipole moment D = QL = D, sin wt (defines D)
Differentiate wrt time

D = QL = wDycoswt = IL = (I, cos wt)L =

Using I,L = wDy and c¢? = 1/€yu,, the power becomes
DEw*

127c3e,

= frz sin@ dOd¢p =

This is proportional to (Dipole moment)? and w*
Not expected to derive this in an exam, BUT should remember this result.
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Recap

28 March 2012
11:07

In the gauge where
1.
ViA=—V=0
c
A & V satisfy

1 62 1% ﬁ
a5z v (A) =|
ceot - HoJ

These are solved by using "retarded" integrals

p (a_z - ’—“') dxdydz
Vix,t) = f ¢
_' 4me, |x — X
j (g P 2= ’—“') dxdydz
Ho [ = c
a0 =12 [ .
4 |x — X|
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Classical Field Theory

24 April 2012
10:21

[s there any principle underlying Maxwell's equations?

Yes- if we use action principles and Lagrangian (as in dynamics II last year)
Dynamics in the Lagrangian Language

In 1-dimension, the path x(t) taken by a particle travelling between x; (t;) and x,(t,)
extremises the integral

t2
f L(x,x,t)dt
t

1

Where L is the Lagrangian: L = Ke — Pe

[NB: total energy=Ke+Pe]
The mathematical solution to extremising the integral is given by the Euler-Lagrange
equations: solution when

6L d (6L)
Sx dt \o%
Where 5, Means a partial derivative wrt x

In this example x happens to be a coordinate

Mathematically, however, it is just the function of t that extremises the integral (path)
For E&M we need to treat space & time on equal footing.

We generalise

t2
f dt — fdt d3x
ty

i.e. integral over spacetime

Lagrangian
: 8f of of &f
L(x,x,t) > L (f,a,@,g,a,x,y,z, t)
x="path"
x = derivatives of path wrt coords
t=coordinate
L =lagrangian density
f=path
g—i, g—; , (;—]ZC, g—]:= derivatives of "path" w.r.t. coordinates
X,y, z, t=coords.
We need to extremise
[ dta3xL(...)
L is given by the physics
The mathematical solution is given by Euler-Lagrange

oL _ o) oL
5f ~ ox, <5 (ﬁ))
Sxt
The pair of indices = summation convention. In this case, Einstein Summation

convention where we sum over one "upstairs"” and one "downstairs" index
e.g.

3
G H® = Z G, H®
a=0

Here G, and H® are 4-vectors
Indices are raised and lowered using the metric
Hy, = gabe' G* = gabi
Where
9% = diag(—1,+1,+1,+1) = ggp
But whatis £
We know(in sensible € = y, = 1 units) the energy density in the E and B fields
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is % (E2 + B?)

Compare E;,; = Ke + Pe beforeand L = Ke — Pe
The lagrangian density is just the difference: £ = %(E2 - B?%)
This doesn't have derivatives in = work with 4 and V instead

We're trying to encode Maxwell's eqns in an action principle
Use euler-lagrange to find the functions that extremize ******
E and B can be "packaged into the field strength tensor
0 —-E -E, —E
E 0 -B, B
=g 5 o -p|®
= y z X
E, —-B, By 0
This is a tensor as it has nice transformation properties under Lorentz-
transformations
Working with 4-vectors

At = (V, Ay Ay, AL),n=101,23

5 = (5 6 6 6 )
K \st'8x’ 8y’ 6z
Then
fu, = 6uAy — 8,4,
[exercise: show that this agrees with (*)]
The lagrangian is

1
L= quvflw
Where
f* = g"fopgh”
Apply Euler-Lagrange
= 6, (6HAY —6VA*) =0
v=—>>V.E=0
v=123->VXxB=E
Vacuum Maxwell's eqns
Exercise: work through this
Remember V.B = 0 and V x E = —B come for free as we're using V, A
(remember c=1 here)
Comments
1. First step towards standard model
2. Beware signs- different metric conventions scatter minus signs around
3. Thislast section (i.e. "classical field theory") is non-examinable as started
yesterday
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Revision Lecture
02 May 2012

11:06

Gauge condition/invariance

Snell's law etc

Ere f

9_ Etrans

; iw
Ein = Ey" exp [—iwt +— (cos Ox + sin Qy)]

_ ref L ia — . —
Eref = E, " exp|—iwt + 7(COS Ox + sinfy)

!

iw
Etrans = E§™"™ exp [—iw’t +— (cos 0'x + sin H'y)]

Parallel component of E is continuous
Just outside (x = 0_) =justinside (x = 0,)

. . lw ) ref _ i _ o
|l_?(‘,"| cos 6 exp [—La)t + = (cos Bx + sin Gy)] + |E0 | cos 0 exp [—lwt + - (cosBx + sin By)]
iw'

= |EE""S| cos ' exp [—iw't + va (cos@'x + sin G'y)]

This holds on the whole surface at any time = for all t & for all
Consider y=0 form is (const)e it (const)e @t = (const’)e ¥t
For this to hold for all, we must have w = @ = w’

Similarly y dependence

iw - iw | - iw' '
(const) exp [? sin Hy] + (const) exp [7 sin Hy] = (const’) exp [7 sin B’y]

To hold for all y, we need
sing sin 6 _ sing’

c ¢ c
Reflection law

6=20
Snells law

!
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sin @ c

sinf’ ¢’
Energy density
OpE+B2
277 T 2u
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