Coulomb's law intro

11 February 2011 15:09

 $F = k \bar{q}_1 \bar{q}_2 \frac{1}{l^2}$ L^2 q=coulomb $k = \frac{1}{(coulomb)^2}$ \boldsymbol{N} $k = 9 \times 10^9 \, Nm^2C^{-1}$

Superposition Principle
\n
$$
\int \frac{dz}{(z^2 + R^2)^{\frac{3}{2}}} = \frac{z}{R^2\sqrt{Z^2 + R^2}}
$$
\nλ = linear density of charge
\n
$$
\cos \theta = \frac{R}{L}
$$

$$
F = \left| \frac{2k\delta q q_{probe}}{L^2} \frac{R}{L} \right| \hat{R} = \left| 2kq_{probe} \delta q \frac{R}{L^3} \right| \hat{R}
$$

\n
$$
\delta q = \lambda dz
$$

\n
$$
L = \sqrt{R^2 + Z^2} \Bigg\} F = \left| 2kq_{probe} \lambda \frac{Rdz}{(R^2 + Z^2)^{\frac{3}{2}}} \right| \hat{R}
$$

\n
$$
F = \left| 2kq_{probe} \lambda R \int_0^\infty \frac{dz}{(R^2 + Z^2)^{\frac{3}{2}}} \right| \hat{R}
$$

\n
$$
F = 2kq_{probe} \lambda \left| \frac{Z}{\sqrt{Z^2 + R^2}} \right|_0^\infty = \frac{2kq_{probe} \lambda}{R} \hat{R}
$$

\n
$$
E = \frac{2k\lambda}{R} \hat{R}
$$

\n
$$
E = -\frac{dV}{dR} \hat{R}
$$

\n
$$
V = -2k\lambda \log R
$$

10 February 2011 13:04

$$
F = \left(\frac{kq\delta q}{R^2}\right)\hat{R}
$$

$$
U = \frac{kq\delta q}{R}
$$

Such that

$$
-\frac{dv}{dR} = \bar{F}
$$

Electric field

$$
\overline{E} = \frac{kq}{R^2} \widehat{R}
$$

$$
V = \frac{kq}{R}
$$

Example Infinitely long charge distribution $\int \delta E = \int \left(\frac{2}{\epsilon}\right)$ $\left(\frac{k\delta q}{L^2}\cos\theta\right)\hat{R} = \int_0^\infty 2\frac{k}{\sqrt{R^2}}$ $(R^2 + L^2)^{\frac{3}{2}}$ \boldsymbol{d} ∞ $\bf{0}$ \Rightarrow $\left| \bar{E} \right| = \frac{2}{\pi}$ $\frac{R}{R}$ $-\frac{d}{d}$ \boldsymbol{d} Point charge q $\bar{E} = \frac{k}{R}$ $\frac{1}{R^2}R$ $V=\frac{k}{l}$ \boldsymbol{R} Infinite cable $E = \frac{2}{3}$ $\frac{1}{R}R$ V R Z $\delta\theta$ $surface = Rd\theta \delta R$ Area is so small it can be approximated as rectangle dR R L L Q

 σ (density of charge)

$$
\delta E = \left(\frac{2k\sigma R dR d\phi \cos \theta}{L^2}\right) \hat{K} = \left(2k\sigma \frac{Rz}{(R^2 + z^2)^{\frac{3}{2}}} d\phi dR\right) \hat{k}
$$

\n
$$
E = 2k\sigma \int_0^{\pi} \int_0^r \frac{Rz}{(R^2 + z^2)^{\frac{3}{2}}} dR d\theta = 2k\sigma \pi \int_0^r \frac{Rz}{(R^2 + z^2)^{\frac{3}{2}}} dR
$$

\n
$$
E = 2k\sigma \pi z. \left| -\frac{1}{\sqrt{R^2 + z^2}} \right|_0^R = 2k\sigma \pi z \left| \frac{1}{\sqrt{R^2 + z^2}} + \frac{1}{z} \right| = 2k\sigma \pi \left| \frac{z}{\sqrt{R^2 + z^2}} + 1 \right|
$$

\n
$$
E = 2k\sigma \pi \left(1 - \frac{z}{\sqrt{R^2 + z^2}}\right) \hat{k}
$$

\nWhat happens if $R \to \infty$?
\n
$$
\bar{E} = 2k\pi \sigma \hat{k}
$$

\nInfinite plane of cargo

What happens if $E = \frac{\#}{73}$ Z^2

Infinite plane $\bar{E}=2\pi\sigma k\,\hat{k}$ $V = -2\pi k \sigma z + \hat{C}$

Point charge

 $E \sim \frac{1}{R}$ \boldsymbol{R} D=number of dimensions

4 dimensions Point charge

$$
E \sim \frac{1}{R^3}
$$

Lisa Randall

FIRST MIDTERM FEB 25

11 February 2011 10:04

Flux of \bar{v} on surface S

 \perp S

$$
\int \bar{v} \cdot d\bar{s} = \int |\nu| \cdot |ds|(\bar{R}\cdot\bar{R}) = |\bar{v}| \int ds = |\nu| \cdot 4\pi R^2
$$

 $\bar{v} = |v|. \hat{R}$ Velocity is in radial direction $d\bar{s}=ds_1\hat{R}+ds_2\hat{K}-ds_3\hat{K}$ K is along axes

$$
\int \bar{v} \cdot d\bar{s} = (v \cdot \hat{R}) \left(ds_1 \hat{R} + \frac{ds_2 \overline{R} - ds_3 \overline{R}}{cancels} \right)
$$

Gauss' law
\n
$$
E = \frac{Kq}{R^2} \Rightarrow E4\pi R^2 = Kq4\pi
$$
\n
$$
4\pi R^2 \Rightarrow \text{surface area of } s^2
$$
\n
$$
\int_{s^2} \vec{E} \cdot d\vec{s} = kq4\pi
$$
\n
$$
\vec{E}2\pi Rz = 2k\lambda z 2\pi
$$
\n
$$
\int_{cylinder} \vec{E} \cdot d\vec{s} = 2\pi kq
$$

 $\pi R^2 E = 2.2 k \sigma \pi R^2$ \perp \mathcal{C}_{0}^{0} $\bar{E}.d\bar{s}=2\pi k q_{enclosed}$ by the surface $\rightarrow gauss'l$

$$
\oint_{\Sigma} \vec{E} \cdot d\bar{s} = 2\pi k
$$

Review

17 February 2011 13:05

Most important result of previous lectures-> Gauss' theorem Distribution of electric charge

 κ $\mathbf{1}$ $\overline{4}$ ϵ_0 = electric permativity of vacuum

Observations:

1. If there are no charges inside

$$
\oint\limits_{\mathbf{E}} \bar{E} \cdot d\bar{s} = 0
$$

2. $\oint \overline{B} \cdot d\overline{s} \equiv$

^Е
There are no isolated magnetic charges- if a magnet is cut in two, you get two magnets; poles cannot be separated

$$
\bar{E} = \frac{\kappa q}{R^2} \hat{R}
$$

Point charge q

$$
\begin{aligned}\n\bar{E} &= |\bar{E}|\hat{R} \\
d\bar{s} &= |d\bar{s}_I|\hat{R} + |d\bar{s}_{II}|\hat{R} + |d\bar{s}_{III}|(-\hat{R}) \\
\bar{E}(d\bar{s}_I + d\bar{s}_{ii} + d\bar{s}_{iii}) \\
|E||ds_i|\hat{R}.\hat{R} + |E||ds_{ii}|\hat{R}.\hat{R} + |E||ds_{iii}|(-\hat{R}.\hat{R}) = |E||ds_i|\hat{R}.\hat{R} \\
\bar{E}d\bar{s} &= |E||ds_i| \\
\int_{\Sigma} \bar{E}d\bar{s} &= \int_{\Sigma_1} \bar{E}d\bar{s}_1 = |E|\int_{\Sigma_1} ds_1\n\end{aligned}
$$

 $2\pi R$

$$
= E \cdot 2\pi R \cdot Z = \lambda \cdot \frac{Z}{\epsilon_0}
$$

$$
\bar{E} = \left(\frac{\lambda}{2\pi E_0} \frac{1}{R}\right) \hat{R}
$$

$$
\oint_{\Sigma} \vec{E} d\bar{s} = \int_{\Sigma_1} \vec{E} d\bar{s} + \int_{\Sigma_2} \vec{E} d\bar{s}
$$

 $\frac{z}{z}$ Other surfaces parallel to electric field, therefore 0

$$
\int |E||ds| \hat{R}\hat{R} + |(-\hat{R})
$$

\n
$$
|E| \int_{\Sigma_1} |ds_1| + |E| \int_{\Sigma_2} |ds_2| = |E|x, y + |E|x, y = 2|E|x, y = \frac{\sigma_0 xy}{\epsilon_0}
$$

For a closed surface enclosing charges Q

$$
\oint_{\Sigma} \vec{E} d\bar{s} = \frac{Q}{\epsilon_0}
$$

$$
\bar{E} = \frac{q}{4\pi\epsilon R^2} \hat{R}
$$

$$
\bar{E} = \frac{\lambda}{2\pi\epsilon_0 R} \hat{R}
$$

$$
\bar{E} = \begin{cases} \frac{\sigma}{2\epsilon_0} \hat{R} z > 0\\ \frac{\sigma}{2\epsilon_0} \left(-\hat{R}\right) z < 0 \end{cases}
$$

$$
E = \frac{2\sigma}{2\epsilon_0} \hat{R} = \frac{\sigma}{\epsilon_0} \hat{R}
$$

If you charge a conductor, all the charge flows to the edges

Conducting sphere with charge q

$$
\bar{E} = \begin{cases} \frac{q}{4\pi\epsilon R^2} \hat{R} & \text{if } z > 0\\ 0 & (-\hat{R}) & z < 0 \end{cases}
$$

Electric fiedl outside

$$
\bar{E} = \frac{q}{4\pi\epsilon R^2} \hat{R}
$$

Total charge

$$
Q = \frac{4\pi}{3} rR^3 \rho
$$

$$
\bar{E} = \begin{cases} \bar{E} = \frac{\rho}{3\epsilon_0} R & \hat{R} \text{ inside sphere} \\ \Box \\ \bar{E} = \frac{Q}{4\epsilon_0} \frac{1}{R^3} \hat{R} \text{ outside sphere} \end{cases}
$$

$$
\left(\overline{E} = \frac{C}{4\pi\epsilon_0} \frac{1}{R^2} \hat{R} \text{outs}\right)
$$

$$
\int \overline{E} d\overline{s} = \int |E| |ds| \widehat{R}\widehat{R} = |E| 4\pi R^2 = \frac{1}{\epsilon_0} \rho \frac{4\pi R^3}{3 R^2}
$$

$$
-\frac{d}{dr}V = E
$$

$$
\overline{\nabla}f = \frac{\delta f}{\delta x}\hat{i} + \frac{\delta f}{\delta y}\hat{j} + \frac{\delta f}{\delta z}\hat{k}
$$

$$
\bar{F} = -\frac{dU}{dz}\hat{R} = -\bar{\nabla}V
$$

Electric potential=the work done by the electrical field on a charge that we move to the point "R"

Magnetism->historical development->we will not follow

Lorentz->force on a charged particle Ŧ f f î \mathcal{V} $\boldsymbol{0}$ I What is the work (change of kinetic energy) done by the magnetic field $\delta w = \bar{f} \cdot d\bar{R}$ δ \boldsymbol{d} \boldsymbol{d} $\bar{f} = mAe. vB = \bar{I} \times \bar{B} \equiv I.\bar{l}$ \overline{q} î \mathcal{V} $\boldsymbol{0}$ $= \hat{i}q(v_{y}B_{0}) - \hat{j}q(v_{x}B_{0})$ Ŧ \boldsymbol{d} \boldsymbol{d} \boldsymbol{d} \boldsymbol{d} \boldsymbol{d} \boldsymbol{d} \boldsymbol{d} \boldsymbol{d} \overline{m} \boldsymbol{d} \overline{d} \overline{m} \overline{d} \overline{d} \overline{m} \boldsymbol{d} \boldsymbol{d} \boldsymbol{d} \boldsymbol{d} \overline{q} $\frac{n}{m}$

$$
\frac{dv_y}{dt} = \left(\frac{qB}{m}\right)\bar{v}_x \qquad (2)
$$

Take equation one and derivate it d^2 dt^2 \overline{q} \boldsymbol{m} \boldsymbol{d} \boldsymbol{d} d^2 dt^2 \overline{q} $\frac{n}{m}$ \overline{q} $\frac{n}{m}$ d^2 dt^2 \boldsymbol{q} $\frac{1}{m}$ $\overline{\mathbf{c}}$ \mathcal{V} Doing viconverce d^2 \boldsymbol{d} \overline{q} $\frac{n}{m}$ $v'' = -\omega^2$

$$
v_x = A_x \cos(\omega t + \rho_x)
$$

\n
$$
v_y = A_y \cos(\omega t + \rho_y)
$$

\n
$$
Qt t = 0
$$

\n
$$
\bar{v} = v_0 \hat{i}
$$

\n
$$
x_x(t = 0) = A_x \cos \phi_x = v_0
$$

\n
$$
v_y(t = 0) = A_y \cos \phi_y = 0
$$

\nChoose
\n
$$
\phi_x = 0 \quad A_x = v_0
$$

\n
$$
\phi_y = \frac{\pi}{2}
$$

 $v_z = v_0$ constant $v_x = v_0 \cos \omega t$ $\boldsymbol{\mathcal{V}}$ π $\frac{1}{2}$ $z = z_0 + v_{0z}t$ $x = x_0$

We started with magnetic fields that we "defined" via the force on a charged moving particle $\bar{f} = q\bar{E} + q\bar{v} \times \bar{B}$ We offered this for a large set of particles that are moving in side a cable/wire $\bar{f} = (mAev)d\bar{l}$: $mAev = electric current$

$$
\Rightarrow \left[\bar{f}=Id\bar{l}\times \bar{B}\right]
$$

b

If

b

b

We showed that the magnetic force does not change the kinetic energy of the particle [does not work] $f = avB$

$$
y = q \nu b
$$

\n
$$
Newton = Kg \frac{m}{s^2} = coulomb \frac{m}{s} [B] \rightarrow [B] = \frac{kg}{coulomb \sec} = \text{ Tesla}
$$

\n
$$
f_{magnetic} = q \nu_0 B = m \frac{\nu_0^2}{R}
$$

\n
$$
R = \frac{m\nu}{qB}
$$

\n
$$
\bar{g} = -\nabla(gz) = -g\hat{k}
$$

\n
$$
\bar{E} = -\left(\frac{d}{dx}V\hat{i} + \frac{d}{dy}V\hat{j} + \frac{d}{dz}V\hat{k}\right) = -\bar{\nabla}V
$$

\n
$$
\int \bar{f} d\bar{R} \Rightarrow q \int \bar{E} d\bar{R}; \oint^{\square} \bar{E} d\bar{R} = 0
$$

$$
\overline{E} = -\frac{d}{dx}V
$$

$$
\oint_{b} \overline{B} d\overline{l} = \mu_0 I
$$

17 March 2011 14:07

We saw

f $\bar{f}' = q\bar{E} + q\bar{l}$ And we saw Lorentz force

$$
\oint_{b} \overline{B} \cdot d\overline{l} = \mu_0 I
$$
\n
$$
\delta \overline{B} = \frac{I \cdot d\overline{l} \times \overline{R}}{|\overline{R}|^3}
$$

$$
\bar{B} = \frac{\mu_0 I}{2\pi R} \hat{\phi}
$$

Compute the force of cable 1 on cable 2

 $\bar{f} = Id\bar{l}$:

- Compute the magentic field that the cable 1 1) produces in the portion of the cable 2 \bar{B}_1
- 2) Compute the force $\bar{f} = I_2 d\bar{l}_2 \times \bar{B}_1$

1)
$$
\bar{B}_{1\to 2} = \frac{\mu_0 I_1}{2\pi L} \hat{\phi}
$$

\n2)
$$
\bar{f} = I_2 d\bar{l}_2 \hat{k} \times \bar{B}_{12}
$$

$$
\bar{f} = I_2 d\bar{l}_2 \hat{k} \times \frac{\mu_0 I_1}{2\pi L} \hat{\phi}
$$

$$
\bar{f} = \frac{\mu_0 I_1}{2\pi L} d\bar{l}_2 (\hat{k} \times \hat{\phi})
$$

Faraday's law

$$
\frac{d}{dt} \int_{\bar{z}} \bar{B} d\bar{s} = -\oint_{b} \bar{E} d\bar{l}
$$

$$
\Rightarrow \frac{d}{dt} \Phi_{B} = \epsilon
$$

$$
\int_{\Sigma} \overline{B} d\overline{s} = \Phi_B
$$
\n= flux of the magnetic field on surface Σ

 $\ddot{}$

PH-123-Electromagnatism Page 12

Flux of the magnetic field $\bar{B}=B_0\hat{k}$ $\overline{B} \cdot d\overline{s} = B_0 ds$ $d\bar{s} = ds\hat{k}$ Σ =total surface \perp Σ $=$ Σ $=$ Σ $=$ Φ - Electric field opposing current \boldsymbol{d} \overline{d} \boldsymbol{d} \overline{d} $\epsilon = V = B_0 L \dot{x}$ \boldsymbol{l} V $\frac{1}{R}$ = \boldsymbol{B} \boldsymbol{R} $\epsilon V = R I$ We have a current (charged particles moving) in a magnetic field f î $\boldsymbol{0}$ $\boldsymbol{0}$ $\overline{}$ $\overline{B} = B_0 \hat{k}$, $I\overline{L} = IL(-\hat{j})$ \boldsymbol{l} \boldsymbol{B} $\frac{S}{R} \dot{x}$ Ŧ $L^2 B_0^2$ $rac{1}{R}$ \hat{i} $\bar{f} = m\bar{a}$ $f = m\ddot{x}$

 $\overline{}$ $\frac{1}{R}x$

L $2R₂$

Type equation here.

Summary of things for exam

31 March 2011 13:12

Gauss' law
\n
$$
\oint_{\Sigma} \vec{E} \cdot d\vec{s} = \frac{\sigma}{\epsilon_0}
$$
\n
$$
\sigma = total electric charge \text{ }aticulated \text{ }by \text{ } \Sigma
$$
\n
$$
\epsilon_0 = electric \text{ }permitivity \text{ }of \text{ }vacuum
$$

$$
\oint_{\Sigma} \bar{B} d\bar{s} = 0
$$

Eg impossible to have monopole magnet

Faraday law

$$
-\frac{d}{dt}\int_{\Sigma_1} \overline{B}d\overline{s} = \epsilon = \oint_b \overline{E}d\overline{l}
$$

$$
\epsilon = \text{induced voltage} > \text{induced emf}
$$

Ampere's law Open surface, around a current

 $\oint \overline{B} d\overline{l}$ b $=$ μ_0 = magnetic permittivity of vacuum I=total current passing through the surface Σ_1

Maxwell realized (~ 1850) that Ampere's law was incomplete. He called the term \boldsymbol{d} $\frac{a}{dt}\int_{\Sigma_{0}}\bar{E}d\bar{s} \rightarrow$ "displacement current

$$
\oint_b \overline{B} d\overline{l} = \mu_0 I - \mu_0 \epsilon_0 \frac{d}{dt} \int_{\Sigma_0} \overline{E} d\overline{s}
$$

If he added this term->many interesting things werehappening with these eqs What things do happen?

You can derive a "wave equation" for electric and magnetic

$$
\frac{d^2}{dx^2}\overline{E} = \frac{1}{c^2}\frac{d^2\overline{E}}{dt^2}
$$

Or same B; interestingly, $\boxed{c^2 = \mu_0 \epsilon_0}$

$$
\frac{d^2}{dx^2}\Psi = \frac{1}{c^2}\frac{d^2}{dt^2}\Psi
$$

Electric charge was conserved Maxwell's Equations

$$
\oint_{\Sigma} \overline{B} d\overline{s} = 0
$$

φ Σ $=$ σ ϵ $\overline{}$ \boldsymbol{d} $dt\int_{\Sigma}$ $= \oint \bar{E} d\bar{l}$ \boldsymbol{b} $\oint \overline{B} d\overline{l}$ \boldsymbol{b} $=$ \boldsymbol{d} $dt \int_{\Sigma}$ Σ Exercise: 1. take the Maxwell's equations and put all their charges and currents=0 2. Next, what happens if you exchange $\bar{E} \rightarrow \bar{B}$, $\bar{B} \rightarrow -\bar{E}$ $Q = I = 0$

$$
\oint_{\Sigma} \vec{E} d\bar{s} = 0
$$
\n
$$
\oint_{b} \vec{B} d\bar{l} = \mu_{0} \epsilon_{0} \frac{d}{dt} \int_{\Sigma_{1}} \vec{E} d\bar{s}
$$
\n
$$
\oint_{\Sigma} \vec{E} d\bar{s} = 0
$$
\n
$$
\frac{d}{dt} \int \vec{E} d\bar{s} = \oint \vec{B} d\bar{l}
$$

Electric circuits

05 May 2011 13:07

Ohm's Law

 $V = RI$

Difficult to get- hard to measure

Kirchhoff's law

Power dissipated

$$
wer\,\text{dissipated} = RI^2
$$
\n
$$
P_{dissipated} = RI^2
$$

$$
I = \frac{V}{R} = \frac{V}{\left(\left(\frac{1}{R_2} + \frac{1}{R_2} + \frac{1}{R_3} \right)^{-1} + R_1 \right)}
$$

Power dissapated =
$$
RI^2 = pu \left(\left(\frac{1}{R_2} + \frac{1}{R_2} + \frac{1}{R_3} \right)^{-1} + R_1 \right) \left(\frac{V}{\left(\left(\frac{1}{R_2} + \frac{1}{R_2} + \frac{1}{R_3} \right)^{-1} + R_1 \right)} \right)^2
$$

= $\frac{V^2}{\left(\left(\frac{1}{R_2} + \frac{1}{R_2} + \frac{1}{R_3} \right)^{-1} + R_1 \right)}$

$$
R_k = k^2
$$

\n
$$
k \in \mathbb{Z}
$$

\n
$$
\sum_{k=0}^{\infty} \frac{1}{R_k} = finite number
$$

Capacitor connected to resistor I Q $\frac{c}{c}$ + \boldsymbol{d} \boldsymbol{d} Q \boldsymbol{R} I \boldsymbol{d} \boldsymbol{d} Q \boldsymbol{R}

2 ways to solve

1st way
\n
$$
\frac{dQ}{dt} = -\frac{Q}{Rc} \rightarrow \frac{dQ}{Q} = -\frac{dt}{Rc} \rightarrow \text{integrate}
$$
\n
$$
\int \frac{dQ(t)}{Q(t)} = -\int \frac{dt}{RC} = -\frac{1}{RC} \int dt = -\frac{1}{RC} (t - t_0)
$$
\n
$$
\left[\log \left(\frac{Q(t)}{c} \right) \right] = -\frac{1}{RC} (t - t_0) \right] \rightarrow Q(t) = ce^{-\frac{t - t_0}{RC}}
$$

Solution

$$
Q(t) = Q_0 e^{-\frac{t}{RC}}
$$

2nd way

$$
Propose
$$

\n
$$
Q = Ae^{-\lambda t}
$$

\n
$$
\frac{dQ}{dt} = A\lambda e^{\lambda t}
$$

$$
A\lambda e^{\lambda t} + \frac{Ae^{\lambda t}}{RC} = 0
$$

\n
$$
Ae^{\lambda t} \left\{ \lambda + \frac{1}{RC} \right\} = 0
$$

\n
$$
Ae^{\lambda t} \text{ is non-trivial solution : not zero}
$$

\n
$$
\lambda = -\frac{1}{RC}
$$

\nCome back
\n
$$
Q(t) = Ae^{-(\frac{t}{RC})}
$$

\n
$$
A = Q_0
$$

$$
I(t) = -\frac{Q_0}{RC}e^{-\frac{t}{RC}}
$$

Power dissapated = R1²

$$
P = R\left(-\frac{Q_0}{RC}e^{-\frac{t}{RC}}\right)^2 = R\left(\frac{Q_0^2}{R^2C^2}e^{-\frac{2t}{RC}}\right) = \frac{Q_0^2}{RC^2}e^{-\frac{2t}{RC}}
$$

Total power =

$$
\int_0^{\infty} P dt = \int_0^{\infty} \frac{Q_0^2}{RC^2} e^{-\frac{2t}{RC}} dt = \frac{Q_0^2}{RC^2} \int_0^{\infty} e^{-\frac{2t}{RC}} dt = -\frac{2t}{RC} \frac{Q_0^2}{RC^2} e^{-\frac{2t}{RC}} = \left[-\frac{2tQ_0^2}{R^2C^3} e^{-\frac{2t}{RC}} \right]_0^{\infty}
$$

\n $\Rightarrow 0$

Add inductor to circuit
\n
$$
\frac{dQ(t)}{dt} + \frac{Q(t)}{RC} = 0
$$
\n
$$
L\frac{dI(t)}{dt} + RI(t) + \frac{Q(t)}{c} = 0 \rightarrow \frac{Ld^2Q}{dt^2} + \frac{R}{L}\frac{dQ}{dt} + \frac{Q}{LC} = 0
$$

 \boldsymbol{l}

$$
= \frac{dQ}{dt}
$$

\n(i) Suppose that we consider R=0
\nWhat will happen to the equation?
\n
$$
\frac{Ld^2Q}{dt^2} + \frac{Q}{LC} = 0
$$

\nUndamped oscillator
\nSystem is the same if t=-t
\n
$$
Q(t) = A \sin\left(\frac{1}{\sqrt{LC}}t + \varphi\right)
$$

\n
$$
\frac{Ld^2Q}{dt^2} + \frac{R}{L}\frac{dQ}{dt} + \frac{Q}{LC} = 0
$$

\nResistance term=damping
\n
$$
\ddot{x} + r\dot{x} + \omega^2 x = 0
$$

\nDamping makes system time dependent $t \neq -1$