Quantum Mechanics

03 October 2011
13:54

Evaluation
2 mid term exams - 20% of final grade
One final - 80% of final grade
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Schrodinger eq

03 October 2011
14:09

Qm- 1900
Schrodinger- 1925

Eq for a function- Wavefunction §i(x, y, z, t)
Eq in partial derivatives [differential of]

For a particle of mass m under the influence of a potential I/,
h? &2 .0
e POt + V(x, t) = lﬁal,[)(x, t)

Suppose that
iE
Yx,t) = e Fpx)

(stationary state)
And putitin schrodmger eq

¢(x t) = Ee R (x)
ih— Y(x,t) =E e‘ftzp(x)
6 ——Et "
52 v t)——e Y (x)
Vp=e & ‘o (x)

hz 124 —
— Y VPR = BpR)
hZ
oYtV -E)Y =0
iE )
Y(x, t) = Ae RieHx
1) ih—t Y(x,t)
2) —
3) ————

1) AEAe hte_’lx

2) Ae” T ( le)e"l"
2

h
3) 5—Ae” T F2A(2Ax2e 2" — g=2x%)

h _IE, 1E, By a2
—%Ae Rte=Ax® (4,12x2—2,1)+VAe e’ —AEeh —Ax

hZ
—%(412X2 —2/1) +Vx —E=0

V=ax’>+a,
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Y(x, t) is the wavefuncction of a system
Y*(x,t) X P(x,t) = [(x)|?> >probability of the system to be between (x,x+dx)

What we need to impose on a wavefunction?
1. Solves schrodinger eq
h? &2 )
- ﬁﬁlp(x' t) + Vxlt[)(x' t) = lhalp(x' t)
2. It has to be differentiable

3. Simple valued
4. Normalizable [° dx|p(x)|? =1

_i_Et A 2
Y(x,t) =Ae h e ™
For a particular V(x)-> solve schrodinger eq
Py = |APe

*© T
Azf =22x% 1, = | A|2
AP | et ax = 1ap 7

OO —Ax? n

dx = |=

_[_ooe X //1
. 2 ,-Ax? _ T
d — N
f_wx e X ’2,13

_i_Et 2
P(x,t) = Ae e ™
For a particular V(x)-> solve schrodinger eq

Yy = AP

* T
Azf —22%% gy = |A|2
|A| e x = |A] /2/1
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10 October 2011
14:16

i
Yix,t) = e“ﬁEtlp(x)

Stationary states
2

h n _
——27511/; () + V)ylx) = Ep(x)
h n _
—5 ¥+ W —E)p=0

Useful today

,°° —ox? gy \/ﬁ

—00
o
3
’ 2—0'xd —
x =
Ny 3
— 40
[ee}
2
’ xe ¥ %x =0
—0o

1. Continuous, differentiable
2. Normalizable

| axpuopwo=| dyr=1
Y, t)=Ae it g-ax?
Plug this in to the schrodinger eq to find a solution > V~(x2 + p)

A positive real number
A Some number

- 2
P12 = 1A1%e™ 24

Calculate

1
oo

<x> = | " x i, Odx = (2—;)E | e?*xax=0

- 1
<xto == & [Cemen= 2 - [

s
1
(Ax) =V< x2 >—< x >2= \/;—/1

f(x) = e—G'XZ
f''=—-20x e~ 0%
f'= (=20 + 462x2)e~ %’

Useful today

K
’ x2e~%" dx = \l47—3
|

q%

a

x2m+1 —o‘x dx = 0

1

20\% _iL
ll}(x,t) _ (?) e hEte—sz
2 2,-2Ax2 2 22\%
1. IPle = 1A1e=** —>meosed—>l II,IJI dx=1-A= (T[)

2. <x> =O=I I/J*xlpdx=IAI2I xe 2% gy = 0

[*3) - 1

2 _ %22 _ 2 —2Ax2% 2 _

3. <x>—’_w1/)x1/)dx—|A| Ie de_zu
1
Ax =V< x2 >—< x >2=——
2V24

A—>00,Ax >0
1> 0,Ax > o
Define
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Momentum operator

ot =22yt
PYinL) =5 v

p*Y(x,t) = ppyp
h s (h 5 J-- 52
TPox\ioxl " )
<p> = ,_OO W(?)%lpdx = I_m?(%) (—2Ax)e™ 22 gy = h(27;1) ’_ (—2Ax)e~24x" gx
1 oo
= (%)2%(—2/1) xe % dx = 0
o 1 1

< pZ > = ’ ; w*(_flz)éis_xzzl,bdx = , B (zﬂ:—l)Z e%Efe_lxz(—hz) (%)Ze_%Et(—z/l + 4AZX2)€_Ax2dx
1 T . - 1
=(7) () ] o+ aria®e™  dr = —h? (5] | (=22 + 4ha?)e ™ dx
2A.\% ;21.\% ) 2 273 2 )

s T[

——h2 2’1‘/;1+4’1‘/4*8,12

1
1/J(x,t)=(%) o HEE g2

p=V<p?>—<p>2=hVl
1

Ax = —
2Vx

Ap = hVa

A= 0 Ap - o

A-0Ap—->0

AAh
po

Uncertainty principle

at?
x=x0+v0t+7

f = Acoswx + B sinwx

f" = —Aw? cos wx — Bw? sin wx
"+ wif =0
Oscillator

f(x) = Acos wx + B sin wx
fx=0=0->A%x1+B*x0=0=[A=0]

—7y = : _ B=0
fu=L)=0-BsinwL=0{_ " _
sinwL =0
wL = km

_kn
=T

f = Bjsin (kL—ﬂx) + B, sin (kL—nx)

h% 8%
“omex TV = Y

st L8

amox ¥ = 5#1’

Ylx, t) = Plx)e” it
h‘ ——Et " i —L‘Et
— e Y ) = lh(—E)Ee REhp(x)

2

h " _
—%lp (x) = Ey¥(x)

P'(x) + w?Pplx) =0
2mE

2
(L)—hz
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P(x) = Acos wx + Bsinwx
YPx=0)=0
Yx=L)=0

P(x) = Bsinwx

_ ZmE_rtk
©= T T

2mE  m?k?

hz 2
m2k?h?

E —_—

k= 2oml?

I 11 | 1
Yp=0 | | =0
[ - - -

L
0 in between I and I11
Ylx, t) = et k_ﬂ
Bre h sm( I x)
w2k?h?
kT omi?

< i km
_ —FERt
PYlx, t) = >'Bke R sm(—L x)
k=1
Guitar

Bysi (k” Jkez
sin{—=x
x L
. (km .
>‘Bk sin (Tx),IBkI = amplitude of each mode
k=1

|B,|? = energy of each mode

i km

_ —Ext .

Y(x,t) = Bpe R7% sin (—L x)
< i km

_ —Ext

Yix, t) = IZ{Bke n7k" sin (—L x)
Will have a very deep meaning

Condition to impose on the wavefunction

’ Yy dx = 1 - probability

n2k2p?
kT omiz
L km
L ’ sin? (Tx) F
*=IBI* 0 =1=B= |7
IO v i o=

t(3)

Believe me that

L [e0]
| w0y tde =1 ) ol =1
0 k=1
cy= probability of the "state" of the particle to be that of the k oscillation
Example
Write the wave function for a particle in the infinite square well such that

the probability for its energy to be E;q is é
the probability for its energy to be E,g isg

2 2, . (10 2 25 . . (28
lll(x,t)—clo\[ze R710% sin (Tnx)+028\[ze 7E28 sm(Tnx)

1
cfo = 3
2
C%S = §6
(28)2h2m?
8= " omiz

1. Quantum mechanics is not deterministic
2. If you measure (in this case, the "energy") something quite dramatic happens after the measurement

bl t) = \Eexl’ (_%Elot) sin (7 x)

Measurement destroys wavefunction

1. Start with harmonic oscillation
2. Complete some of the things that we discussed last time
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RO vy =ind
Zmé‘xzw v=i Stlp

Last time we solved it for

Today we will study

V_sz
2

As in previous lectures
Propose

i
Plx,t) = e A Px)
— we plug this into the schrodinger eq
Check at home
"o + Sty =
o ¥ X+ xTp = Ey

Y+ xP = By
(a*—b?)=la+b)la—D)
The idea is to factorize the 2nd order eq

Define two operators
1 ih d +i %

a, = —1Tax imwx
1 %h d . %

a_ = —17dx imwx

h
vZm'i dx VZmlidx
= i%—h%p” — El'mwi(xlp) + mexﬁlp” + m2w2x21,b%
2m i dx i

1
= m{—hzl/;” — hmo(Y + xp') + mwhxyp + m2w?x}

=
R, hw +ma)2 )
ara-p =—o Pl -+ ——x"Y
hw
a+a_1/)=E1/)—7¢
k
w?=—
h2 2
! 2 —
Zmlp + > x“p =EyY
U M UL
a_a,y = 17 dx imwx 17 dx imwx
1
= ﬁ{—flzl/}” + hmw(xp + ) — Amwxyp + m2w?x?P}
G ”+mw2 , +hw
STVt Y

Yix,t) = 2‘Ck\lge—%5kt sin (kL_ﬂx)

1. E quantized

(c)? = probability for the particle to be in k-state
\newcommand{\~new~}{\~old~}

Summary
We study the oscillator in quantum mechanics
This means the schrodinger equation for a particlue under a potential
kex?

VT
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2
mw
- 2
v= x
( 2 )
We proposed a wavefunction

LBt
Ylx, t) =er” P(x)
We get

[ mw? £
me (x) + 5 X P(x) = Elx)|(*)

Special function

Very difficult to solve

The problem here is to find

E=possible energy

1 (x)= wavefunction
Actually, there is a nice way olf solving this without solving the eq (*)
To do this we started to study an idea due to heisenberg (st
Last week we introduced two operators
a;
a_

lay,a_l = hw
la_,a,;l = hw
Kinetic + potential

1
HZE mv2+V(x)
1 2
=2

m" T 2m
p =mv
dZ
2=—h2—
P dx?
2 dZ
Hz—ﬁﬁ‘l'[/(x)

At home, show that

H = + ho
= a,a_ >
or
Ho= hw
= a_a, >
We will know the result for
lay, Hl = show at home — hwa,

la_,H| = hwa_

As a sample let me calculate

la_.Hl=a_H—Ha_=a_ (a_a+ —hTw) - (a_aJr —hTw)a_

1)
a_—a_a,a_+—a_

=a_a_a; — 7 2

=a_a_a;—a_a,a_=

The idea is instead of [a_a, = —hw + a,a_]
a_(—hw+aja_)—a_aya_=—-hw_Fa_a,a_—a_a,a_ =—hwa_
Theorem

If you have a wavefunction ¥, (x)

That solves the Schrodinger equation with energy E,
H‘/’* = Ex(lp*

Then you can construct two other functions

a .

a_,

E.+h
They will solve the Schrodinger q ( + w|

E.—hw
a, — satisfies the eq with E = E, + hw
a_ — satisfies the eq with E = E, — hw

H(a,y) =lay, Hl = (a H + hwa )P remember
=a,EY + hwa,yp = (F + hw)(a) e i
(as) = v, | “eortax = [T

"(x) = (x) ! df—

- S Y
f'(x) =ax flx Flx) dx ax e
1 "(x) = > =Ade 2
f(x)df ax dx flx) =ax fx) - flx) =Ade 2

ﬁ,%:’axdx

ax?®
logf=T+c
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ax?
- f= efe 2
ax?
2

—)f:Ae

If a wavefunction { with energy E

means |HY = EY
Then
Yy = (a )
Yo =(a_y)
Also solves the schrodinger eq but with energy
(E £ hw)
Energy of a particle is positive
1)bsolution

Hlpsolution = solutionwsolutmn

a-Ysotution = Enew = Esor — hw

a_a_ay , = Enew = Egop — 30w

Since there is no negative energy, there must be some wavefunction/state such that if you apply a_
on it - give zero

1, =ground state

- solve for this Y,

1 ad . d .
= (T e o — imexy ) = 0 > S = imoxip,
d mw
Vo =%
_mw, 2
1!)0 =Ae 2h
[ee] _sz
| wowidx =1412f e dx
Value of A is
_ (mw )%
Ry
How do we calculate
Y, = first excited state
Yy =ao
1 Ad .
ﬁ(falﬁo + mexwo) =,
1 h _mo, _mw,
Y =——=(Ae *" +imwxde h
VZm i
P = —— e ()
= e x
' vIm
If you calculate the energy of the ground state
hw
Hipy = 71/)0
hw
—- =energy of ¥,
_Mmw, 2
Yo =Ae

Emz(m+%)h(u
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Summary

07 November 2011
14:07

Schrodinger eq
For a particle of mass m under the influence of a potential V(x) (f =— Z—Z)
h? §2 )
v Yix, t) +V(OyY(x,t) = lﬁa Y(x,t) - you get

hZ
—o— () + V() = BY

i
By substitutingin (x,t) = e &
complex in most

Et

W= of our examples
i
p(x,t) = e 7"
Wavefunction

dif ferentiable
single valued

Y(x, t)or P(x) = o
f YyY*dx =1 - "probabilities"

w&o:ém@@)

Y(x,t) = Aexp —%Et exp —A(x — a)?

[pI? = Yy = |A|? exp —2A(x — a)?
We computed

<x> :f Y(x, txyp*(x, t)dx,<p > =f 1/)75 =0
_oooo - %) h 2 2
2 _ 2.0, % 2 — | —qh*
< x> —f_ool,bx Yrdx, <p-> f_mt,b(i) dle'b dx
1
<x2>~1 <p?> ~2
AxAp~h
2
—Y" =FE¥
2Zm
Y = A cos wx + B sin wx
, 2mE
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Energy is quantized
Solving the problem—

h2m?
Ex = (5—7 | x*
k <2mL2>K

- 2 km _L
Y(x, t) = kz_lck\/;sin (Tx> e REK!

lck |2 =prol;ability of finding the system in the state of E},
Example

0 2 . (kn ) _%Emt 1+ 2 . (kn ) _%Ezgt 15
= — B — *k — —_ —_— * —_—
Y(x, Lsm Lx e ) Lsm Lx e 16

P(Eyo) = (1)2 -2
177 \4) T 16
15
P(E3g) = R
As soon as one state is measured, wavefunction collapses
kx> mw?®
V=—= x
z 2
f
w= |—
m
L+ B ey = )
m? T YW = Bl
—special function
1 (ad |
ai = ﬁ(;a i lma)x>
hw
a,a_ + T
l[a_,a,] = hw,H = heo
-G T

lay, H] = Fhway
Y, such HyY, = E,y,
|H(ay.) = (E. + hw)(ag.)
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5
Y, = ara o = a P, E; = Ehw

hw 3
lpl = a+l/J0,E1 = (7 + h(,()) = Ehw
Yo

_mw, 2
a_ Py =0[-|Yy=A4e 2h
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SS

13 November 2011
12:25

h? &2 5 0
_%ﬁx/)(x, t) +VY(x, t) = lﬁalp(x, t)

Suppose that
_IE,
Y(x,t) =e A P(x)

-stationary state
Can be put into schrodinger eq

Y*(x,t) X P(x,t) = [P (x)|? >probability of the system to be between (x,x+dx)

What we need to impose on a wavefunction?
1. Solves schrodinger eq
h? 82 o

—ﬁﬁlp(x, t) + Vxll)(x, t) = lha

2. It has to be differentiable
Simple valued

4. Normalizable f_oooo dx|Pp(x)|?> =1

* —Ax? T

dx = |=

L; x(ﬁ
OO 2 ,-Ax? T
dx = |[—=
j—wx e X ’2/13

<x> = footp*(x, t)x Y(x, t)dx

1/)(35» t)

w

oo
<x%> =_[ YrxyP
—©0

(Ax) = /< x2 >—< x >2

Momentum operator

. R8

p= iéx 5 5
éx Oy

(e, = -2 p(x, 0

YD) = 75

pAY(x,t) = ppy .

h5<h8 )_ h26
i 6x ié‘xl/) B 6x2¢

1
22\% _i
Y(x,t) = (?) e RELg—Ax?

Ap = /< p? >—<p >2=hV1
Ax = —=
x NG
Ap = W2
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,1—>ooAp—>oo

A-0Ap->0

h
AxAp~ >

Uncertainty principle
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Angular momentum (spin)

16 November 2011
12:03

Treatment quite similar to the oscillatora, , a_

Discuss something
x' =y —vt)

t’=y(t—%)
y,’=y
zZ =7

Lorentz transformations

K% 62 6
- %ﬁlp(% t) +V()yY(x,t) = lfl&l/}(X, t)
Not invariant under Lorentz transformation

Treats time and space differently
2

O ) ==
) =5—=f(,
Ox? fxy c? 5t2 f
Is relativistic invariant
Treats time and space the same

lp~e—/'lx
Ax~—
- AX A
Ap~2
- Ax Ap~h
Heisenberg uncertainty principle

Suppose that you consider two operators

01,6,

These two operators 8,6, can be measured simultaneously with any precision if and only if
[0,,6,] =0

You cannot measure simultaneously
%,p ~ [Pl = ih
To measure simultaneously
0
91}[91;92] =0
2

x — arbitrary precision Ax~0
Often some time passes you measure
p Ap~0
This is ok in quantum mechanics
Why is this useful?
In quantum mechanics one describes a system, by giving the values of a set of operators, that
commute with each other(complete set of commuting operators)

AxAp, = h
AyAp, = h
AzAp, = h

AxAp,! (not!) = h
You can measure x and P_y with all the precision you want
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[x, 0] = [y, py] = [2,0,] = iR

[xlpy] = [x)pz] = [}"Px] == [pry] =0
You can measure these with all precision

L=RXp

R = (xt+ yj + zk)

P = (pxi+ pyj + psk)
ik

Rxp=|x y z
Px Py Pz

Lx_ypz_zpy

Ly = zpy — xp,

Lz_xpy_ypx

Ly * Ly # Ly * Ly

Last time

6, and 8, are two operators [xl-, Dx> Py» pZ, H, etc]

You can simultaneously measure 6; and 6, with all precision if
[64,6,] = 6,6, —6,0; =0

Some commutation relations

[x, 0] = [y, py] = [2,p,] = ik
[x,y] =[x,z] =[y,z] =0
[px'py] =-=0
[xrpy] = [x:pz] =-=0

[AB,C] = A[B,C] + [A,C]B
AB.C —C.AB = A.(BC — CB) + (AC — CA)B
ABC — ACB + ACB — CAB = ABC — CAB
[[AB,CD] = AC[B,D] + A[B,C].D + C[A,D]B + [A,C]D.B)|
Good observables commute with each other such that [A,B]=AB-BA=0
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Commutation

21 November 2011
14:17

We discuss today are the
[Ly, L]
[Ly, L]

[Ly, L]
=7

Will show that they do not commute

[Ly, Ly| = yp, — xPy, 2Dy — xD;| = [y 2Px] — YDz, X0, — | 2Dy, 201 | + | 2Dy, 2D, |

[AB,CD] = AC[B,D] + A[B,C].D + C[A,D]B + [A,C]D.B
(Y02, Z2Dx] = yZ[P2 Dx] + Y[P2 2. D + 2[y, D lp2 + [V, 212 D

VzZlp,, pxl =0
[y, zlp,.px = 0
Z[y' px]pz =0

yIpz zl.px = —ih yp,

[Pz zDx] = iR
[Zpy' po] = Zx[pyipz] + Z[py' x]pz +z[z, px]py + [z, x]pxp;

[Zpy.xpz] = ihxp,
—[ypz, xp,1 — |2py, 2Dx] = 0

[Lx'Ly] = ih(xpy - ypx)
= ihL,

[Ly,Ly| = ihL,
|Ly, L,| = ihL,
[L,, Lyl = ihL,,

h
=30 o
5y=g(? 0)
SZ:E((l) —01)

2 . 2 . 2 .
[S:,S,] = S¢Sy — 5,8, = %((’) fl.) - h—(_‘ (.)) = h—(Zl 0 l.) = ihS,

5525555, = 0 -0 =0 %)=,

[S,,S.] = 5,5, — S.S, = %2(2 _01) - h—z( 0 b= h—z(o “H)=ins,

Algebra of SU(2)
Pauli 1929
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Angular momentum

23 November 2011
12:09

[AB,C] = A[B,C] + [4,C]B

Ly =yp, — ZPy
Ly = ZPx — XD
L,= XPy — YDx
Used [i,p;] = ih
Where i=x,y,z

[Ly, Ly = ihL,
[Ly,L,| = ihL,
[L,, Ly] = AL,

h
SF%@ (1))_
5y=g(? o)
SZ:E(é —01)

[Sx, S| = inS,
[Sy,S,] = ihS,
[S2, Skl = RS,
Notation: sometimes to denote angular momentum, people use J,L,S
S=spin (angular momentum)
L=orbital (angular momentum)
J=total angular momentum
All satisfy above notation
We said that two operators that do NOT commute an NOT be measured simultaneously with all
precision. There is an "uncertainty principle" for any two operators that do NOT commute
[61,0,] # O# = AO,AB, > h#
[x,p.] = ih = [AxAp, = h]
The "algebra” of angular momentum (commutation relation) tells us that L, L,, L, are NOT a
good set of observables
Let us first introduce L* = L% + L5 + L3

2 =12
Let us study
[LZ' Ll]
i=xy,z

[LZILZ] = [Lgc + L§1 + L%, LZ] = [LilLZ] + [LZiLZ] + [L%i LZ]

[L2,L,] = Ly[Ly, L] + [Ly, L, Ly = LyihLy + ihL, L, = —if(LyLy + LyLy)
[L2,L,] = in(LyLy + LyL,)
[Lg: Lz] = LZ[LZJ Lz] + [Lz: Lz]Lz =0

[L2,L,] = —ih(LyLy + LyLy) + ih(LyLy + LyLy) + 0 =0

[L2,L;]1=0
This tells us that two good observables two good operators measure one
L?and L,
L* and L,
L?and L,
In all the books, people choose

PH-205 Page 18



L?and L,
Exactly as we did in the oscillator, we will define two new operators
Ly =Ly+il,
L_=L,—il,

U dy] = itJ,
etc

[Ly,L,| = ihL,

[L;, Ly] = ihL,

Convention: Use J, and J? as observables

]4_- =]x i i]y
JE=li+)y +z
And
Iz
h
k‘%@ a
Iy g@ o)
Jz = E(é —01)

ll)l,m
l>]%m-],
]zwl,m = hzl(l + 1)wl,m
JYim = hmp
m:—1,...,1
Limits of (1)
Quantum numbers | and m
Consider a particle of spin 1/2 = electron, proton, neutron, quark

Spin 1-> photons
Y11

lpl,O

lpl,—l

Spin 2 -> gravitons

2%
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Y21
Y20
Y21
Y22

J+ = ladder operators
Change between states for m

]+=]x+i]y=h(8 é)
Jo=le=ty=h( )

peppei=fQ D)+

h
=30 o)

3
]2171 = thvl

3
]ZUZ = thvz

Jivi = R0

= O =n() =
J=n()

J_v, =0

A+
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30 November 2011

12:09

1
La

-3 a

Schrodmger eqinregion 1 (left) and 3 (right)
1/’”(95) + Voyp(x) = Eg

=" +—(E Vo) (x) =0

In2
h rn
Tom? T
2m
- l/)” + 2 lp(x) - 0

Y + w?Pp =0 > Acoswx + Bsinwx
Y — w?Pp0 =— A et¥¥ 4 Be~®*
In regions 1 and 3

,  2m
YT (E Vo) =0

P - 0%y
2m
w2 = ﬁ(VO - E)
In1
Y, = Ae®1* + Be~“1¥
In3
Y3 = Ce®1* + De~“1¥
In2
Y+ wdp =0
2 2m
Wy = ?E

[, = Q cosw,x + Fsinw, x|

Nicrnuintad snnt narmalizahla
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Discounted :not normalizable

.-"’.-.--
()

-
(%]

Schrodingereqin1,in 3
Inregion 1
Py = Ae“r”
In region 2
Y, = Q cos wyx + F sinw,x
In region 3
Y3 = De™“1¥
) 2m
wy = HZ (Vo — E)
2m
= FE
A wave function needs to be continuous and differentiable
L P(x=—a)=9(x=—-a)
ii. P1(x=-a) =93(x =—a)
iii. YPo(x=0a)=93(x=a)
iv. Pr(x =a)=1v3(x=a)

w3

i) Ae 1% =Qcoswy,a—F

ii) Aw,e™®1% = Qsinw,a + F cos w,a
iii) w,(Q cosw,x + F sinw,x) = De™®1¢
iv) w,(Q cosw,yx + F sinwyx) = —Dw,e®1¢

AQFED
Unknowns
4 equations: put in mathematica

f_:l¢¢*+f_i¢¢*+famww* -1
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Quantum tunnelling

Lagrangian — definition
L=T-V
where
mx?

2
V=potential

1. Free Particle —» S = mzx

2. Oscillator

0

v Kx? L mx?  kx?
>V=—> = _—
2 2 2

F=-kx

Action,
t

s [(rae

t

Momentum action principle

impose— minimize the action

- find some eqs Euler Lagrange eps

d (6L\ 6L
dt (&) ~ box
o pFree mk B it
6x — Oscillator mx dt
6L S Free 0

8x - Oscillator —kx
Free particle @mix =0

Oscillator ~ mx = —kx
Much more complicated if mass # constant

Interference + diffraction
Y=y +¢;
P = |11 + [¥,]* + 2¢1 9,
Y1z + o

P = P, + P, + Interference term
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07 December 2011
12:07

mx?
L:T—V:T—V(X)
d <6L) _ oL
dt\6x)  6x
Action

tt
5= [“vae
t

2 slit ’
Yo =91+,
I=[Ygl?® = [1 + Y |* = Y7 + 93 + 2Y19,

2y, = interference

3 slit
Yo=Y+, +3
I=1;+ P, +Ps)?

4 slit
Yo=Y+ +P3+ 1,
I'= 11+, + 13+ Yul?

Electrons

Yo=Y+,

Wavefunction at x=A

Prob (electron at A) = |42

= 1 + P21? = [P1 | + [W2]* + Pa1ps + P13
Ya = 2 (x)

[P(4) = [Zyil?]

P, =sum over all paths to get to the point A
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Ya = 2Piji

P (x1tq1, x,t;) =sum all possible paths/ways that go from (x;t;) = (x,t;)
Yi

i [t

Amplitude(x,,t;,x,,t,) = [ DX exp —Ef Ldt
ty

DX means sum over ALL paths

22
Equivalent to schrodinger eq for L = % —V(x)

1. Classical limith — 0
AxAp = h

ot
1 2
exp—ﬁf L dt = sin + cos
t

1 .
l
A= €Xp — asclassical

S — path

All this course we worked with NON relativistic quantum mechanics
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Exam

Mon Jan 16 2pm
Email carlos if you want to redo any of the mid terms

Schrodinger eq will be written in exam- don't need to memorize
Given ay(x,t) -

<x>
<x?>
<p>
<p?>
AxAp = h
Operators
|61,0, ..., 0,]

Good operators if
[64,6,] = all prescision etc

Good observables
(Lx; LZ)
(px' py)

Angular momentum

L;J;etc
Ly = yp, — zpy etc
1>=12

Where i=x,y,z
[Ly, Ly]| = ihL,

etc

Ly = effects on the states

o
S -

);
()=
(G- ()
J+ ((1)) - (0)
" (1)0= 01 0
=0 o)iv=0C; )
Jz = (1 _1)
UzJ?)
Oscillator
h 62 )
—ﬁﬁlp + Vl,l) = lhglp
_ kx?
' T1 hd
a, = E (7a + Lma)x)
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1 (h d . )
a_ = Tam \i dx imwx
[a+la] =?
[ai,H] =?
Spectrum discrete

1
Em=(n+§)hw

Y= — solved

2

Yo=e"

Y1 =ay

Yy = apa, Py
Etc

Go over these things to ensure understanding
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FTL

27 November 2011
15:12

o o ¢
%
Zp
1:. F
B
u\‘ ®
o

1o

Op is a faster than light path

In frame S, op is forwards in time t,, > t,

In frame S', OP is backwards in time, tzla <t

= If a faster than light signal is possible, Then in some frames it is forwards in time, but in other
frames it is backwards in time

tan @ =

tana =

Slan|g

Where u is the speed of the tachyon
Backwards in time in S' if the relativity velocity of the frames satisfies
tanf > tana
v C c?
S—=2>-=v>—
c u u
Directly from Lorentz transformation

For Op,
v
I — _——
ct —y(ct Cx)
v
X =y(x—zct)
Speed of tachyon u = %
v
t’<0ifct—zx<0
v X
=>Ct(1—c—2?)<0
(1—15):1—111
ct
c2

SUV>—
u

So far, this is not a terminal problem

The problem is that once we accept faster then light/backwards in time in some frame is
possible, Postulate I says that it is possible in all inertial frames in particular, it implies that if Op
is possible, then so is motion PQ
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Closed path 0PQ is incompatible with causality (Grandfather paradox)
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Problem Sheets

21 November 2011
15:18

Sheet 3
1. Track= 1.05* 10"°m
Speed = 0.992 = 3 * 108 ms™1
= lifetime in LAB FRAME
1.05 x 107°

= 0.992+3 %108
Lifetime in REST FRAME

1
= ;(3.53 *10718) = 0.445 * 10" 8sec

S?2 = —c?t?+x%1ab

=3.53 x 107 8sec

= —c?t'? rest
2
X
12 _ .2
>t =t — C_2
v2
>t =t |1-— c_2
= y_lt
2. Lifetime in rest frame = 26 * 10~ %s
At 0.99c
! 7.1
y T e———
V1 —0.992
= lifetime in lab/earth frame = y (26 = 1079)
=184 %10"%s
Distance = 1.84 * 1077 * 0.99 * 3 * 108m
= 54.6m

2
-5 = (142)(1-3)
1—0.992 = (1.99)(0.01) = 0.02

B 1 B 1 B 10 10 _
Y= = V0.02 2 14
3.
i. Earth time when astronaut reaches VEGA
26
= ﬁyrs =26*26yrs
L ! =(1-0.01)"1
099 1-0.01 '

=1+0.01+0(0.01)2 =1.01
ii. Time to receive radio signal=26.26+26=52.26 yrs

iii. Astronauttime at VEGA= % 26.26 = 3.7 yrs

1
y=—— =71
V1 —0.992
$2 = _c2p02
= —c?t? +x?

o~

2 2
22 X (g
c? c?

t'? = (26.26)% — 26
= (26 + 0.26)% — 2.6% = (52 % 0.26) = 13
4.

i. Length earth=]l/plane length= (1 — 2.2 * 10_12)Lplane
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c=3*10"8m/s
v 630

E=m=2.1*10_6

=1+22x10712
Change in plane length as measured on earth/length
=22x10"12L/L

=22%10712
Sheet 2
1) 1sthalf
Invariant spacetime interval
§% = —c%t? + x*?

Earth frame
§% = —5%4+4.9°

Astronaut frame
s2 = —c?72
= 12 =5%2-409?
=99x0.1
= 0.99
T=+0.99
= 0.995
Total = 0.995* 2 = 1.99 yrs
OR
v 4.9 098
c 5
B 1 B 1
V= 2 0.199
g

Total time in astronaut frame
=y~ xearth time
=0.199%x10 =199 yrs
2) Simultaneity- straight out of lecture notes
3) Timelike, lightlike, spacelike
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Timelike

Lightlike

Spacelike

As long as motion is timelike, motion is always forwards in time
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1 Vectors& Newtonian dynamics

04 October 2011
10:11

Position vector

(-

Any vector

Ux U1
Uy U3

Index notation

Scalar product of vectors
3

UV =uUvy + UV, + UzV3 = Z u;v;
i=1

Now introduce Kronecker delta symbol
lifi=j
%i=0ifie]
]
Consider this as a matrix

1 0 0 811 612 613
5ij:<0 1 0>=(521 822 523)

0 0 1 631 03 033
Scalar product is
3 3
u.v= ZZ Sijuivj
i=1j=1
Matrix form
1 0 0\ /"
womc b 3 0)()
0 0 1/ \Us

"Einstein sum convention

So just write w;v; instead of Y>_, u;v;

Notice that this is what we did with the metric (distance relation)

ds* = dx* + dy? 4+ dz* = §;;dx;dx;

Ascalar product Ametric

In general, ds? = g;;dx;dx;

Where the metric g;; determines the shape of the space eg 3-sphere, hyperboloid
Flat Euclidean space g;; = &;;

Rotations
Restrict to 2 dimensions for simplicity
Vector

_ (V1) _
7= (vz) = v,
Under rotation

4

_ v
v—»v’=( }>=v{

v

2
2

I __ —
v = Ryjv; = z Rijv;

j=1
In matrix notation

(V{) _ (Rn R12> (vl)
7 Ry1 R/ \V2
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o (c059 —sinH)
H sinfd cos®

R has a special property
RTR=1
( cos 6 sinH) (c059 —sinH) _ (1 0)
—sinf cosf/ \sinf cosf 0 1
We say that R is "orthogonal"

In 3 dims, R;; where i;; = 1,2,3 (3x3 matrix)
Still Orthogonal RTR = 1
N dimensions — %N(N — 1) angles

"Group theory"- mathematics of symmetry

Frame of reference

This is a system of measuring space and time, set up by observers with identical motions

In general, the description of events will be different in different frames, BUT underlying reality is
the same

Eg

One frame S which is fixes relative to the earth
Another frame S' could be aboard a plane
Each frame will assign position to an event S — (x,y,z) andtimet S’ - (x’,y’,z") and time t

Newtonian dynamics
Essential feature is the special role given to inertial frames of reference i.e. fixed, or moving with
uniform velocity NOT accelerating.
Postulates
1. The laws of dynamics are the same in all inertial frames (all inertial frames are equivalent)
This is a relativity principle- it means there is no absolute rest frame, only relative
motion is important
2. Since all inertial frames are equivalent, the simplest effect of an interaction(force) is to
produce an acceleration

Forces change acceleration, not velocity
3. Dynamics takes place in flat Euclidean space = laws of dynamics are invariant under rotations
& translations deep theorem (Noether's theorem)
Translation invariance = momentum is conserved
Rotation invariance — angular momentum conserved

Galilean transformations

Relate measurements in different inertial frames

(look at 1 space dim for simplicity)

"moving" frame (s' with velocity v) has coords (x',t')

Stationary frame (s) has coords (x,t)

In'S, event p has coordinates (xp, tp)

Clearly, x, = x, — vt,

Assumet, = t,

Applies to any event P, so we have the general relation between coordinates in frames S and S'
(galilean transformations)

{ t'=t
x'=x—vt )
in3 dim{_, t _,= t _,
x'=x"—-v"t
Invariance of equation of motion
Fem®E should have F = m .
= m—— should have F = m——
dt? dt'?
_ d?x’' az d*x
=>F = (x—vt)=m

m—==m— —_—
dt'? dt? dt?
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Postulate 1 holds
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2 Space and time in special relativity

10 October 2011
10:45

Newtonian picture is changed radically in special relativity (einstein 1905)
Special relativity is based on the following postulates
Postulate 1A
The laws of physics are the same in all inertial frames
Postulate 1B
The speed of light is the same in all inertial frames
Note Postulate 1B introduces a new fundamental constant c into physics. (compare with
quantum mechanics, scale h)
Postulate 1A extends relativity principle (equivalence of inertial frames) to all of physics
in particular including electromagnetism, not just particle dynamics
To satisfy postulate 1B, we need to change our ideas of space and time
Use ct and x as axes- both have dimensions of length

ot ct'
/? M
: o
|5 thay ot -jmd” -
! Fla 3 pearl, of light
o T,
jostead 4
W Lo wale /’/
-
“Ha WJ“’W J/f
od 1:55“"- gamits L7
out ot 0 45" Matr om a line rnnh‘f—f T dhe ff,
of ot -
a*ﬁ"" o @i A gamE wilie o1 < e
."/ '
l‘ ran ﬂfﬂ.”d e +hL au sats
F,m-ltr o oo bR ..-F A ot
have fars value. = <
- - —fommmmm oo %"::‘:}‘,’/
- AN
———T o ite on a lne parallel 1o the
- , | "
e e e e e o
# il
- [ . " h
e ro PSS .i"""""'l'EI e
)
/.I : :J- et "II.‘_ havie e 'I.ﬂru— U{i
# i
<] ¢
: »
-"""--._,_______ _-_._._'_._/' = x
T

B,
drtance. travieflad ? I;a.h i Time T e e (o, T efreme_

K The Galilei TTonustormitiot  piler  she. t ars
#H The Jomniz Jrnaformenion viis bath. 27 and +° dver
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Measure speed of light in new frame S'. To keep speed of light = c, need to change both axes
(ct’, x") both different from (ct, x)
= time is different in different inertial frames

Lorentz Transformations

These show how space and time coordinates are related in frames S and S’ with relative velocity
\%

[For simplicity, assume v is along x-axis]

Postulate 1B
v

x' =y(x—zct)

ct' = y(ct — %x)

*

Check the speed of light

X
VelinSz?zu

v
VelinS’=x—,=y(x_€Ct) =u'
vy (t-zx)
AG)
r(1-z%)
= u’=u

This formula relates a velocity u measured in S to the velocity u' measured in S'
Note u' ~ u — v only when u, v < ¢
Postulate 1B says that if u=c, then u'=c

Setu=c
' cC—vV
>Uu =——p=-°¢
C2

So Postulate 1B is satisfied by transformations
NB this would be true for any choice of gamma
Postulate 1A
This means we must have the same transformation from S' to S
v
X = (x’ + —ct’)
Y c
v
ct=y (ct’ + Ex’)
)k

NB change sign of relative velocity
Check consistency of * and **

v v?
x=y? x—vt+v(t—c—2x) =y? 1_0_2 x

v v v?
ct=y2<ct—zx+z(x—vt)> =y? (1—C—z>ct

1
>y%= >
v
1_F
1
= =
Y 2
1_?

So Postulate 1A shows that the scale factor y is not arbitrary (as allowed by Postulate 1B alone)

but is velocity dependent,
1
V= —vz
1—-=
c2
To summarise
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The lorentz transformations are
v
x' = (x —-— ct)
14 c

t’=y(t—czzx)

Where
1
Y) = —

NB- transverse space coordinates are unchanged
Note that these reduce to galilean transformations when ¢ = oo

MinkowskKi Spacetime
Since Lorentz transformations mix space and time, the geometry relevant for special relativity is

4-dimensional spacetime
However, 4-dim Minkowski spacetime is NOT just Euclidean space
Recall the Lorentz transformations

ct' = y(ct —gx)

v
! - ——
X =y (x - ct)
So both x and t are changed under a change of frame S to S'
But something is left invariant.
Invariantis
§%2 = —c?t? 4+ x2
(in3d S? = —c2t? + x2 + y? + z?)
Check
§'2 = —c?t'? +x"?

= —y?2 (ct - ;x)z +y2 (x — gct)

v? v?
= y?|—c?t? + 2vxt — — x* + x* — 2vxt + —Zcztz]
c c

2 2
v v

= —y? <1 ——2> c?t? +y? (1 ——2>x2
c c

2

= —c?t? +x?
: 1
Since y? = —
c2
So the combination 2 = —c2t? + x? + y? + z? is always the same, no matter which frame of

reference we use
Analogue of distance in 3d Euclidean space
Call s2 the (square of the) spacetime interval between origin and point

ct
Introduce position 4-vector x =

V4

X
Generalising 3-vector x! = (y),i =1,2,3
z
ct

X

xH = ,u=0,12,3

z
O=time; 1,2,3= space
A Lorentz transformation is x# — x'#

Where
y —%y 0 0
u — u A v
o= L X Gherelf=|-zv v 00
4 %1 4x4 4x1 0 0 1 0
0 0 0 1
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. | CHECK THIS

SGPC sheet
Generalizes rotations in 3d space
x't = R} x/
3x%1 3x3 3x%1

We can write the spacetime interval as
-1 0 0 0\ sct

0 1 0 0}[=x
0 01 0f\y

0 0 0 1/ ‘z
= x#gux’ = xT gx in matrix notation

§S2=(ct x y 2

-1 0 0 O
0 1 0 0
Where g, = 0 0 1 0
0 0 0 1

This generalizes 3d distance S? = x” 1x = x'6;;x/
The 4x4 matrix g, specifies the spacetime interval in Minkowski spacetime it is called the
metric
Now re-check that S? is invariant under Lorentz transformations
S% = gpxtx?
Lorentz tranf x* — x'#* = L£x"
Check
S?% = gupx'tx"
= gWLgxpL‘(’,x"
JuvXtx® = gpexPx°
= S? is invariant if
g#ngLZ = Ypo
Matrix notation
SZ — xngxr
=xTLTgLx
= xTgx if §? is invariant

- [Fai=4]

CHECK
LTgL
v v
Y _EV 0 0 -1 0 0 0 Y _Zy 0 0
| 0 10 0\l v
=l7cr v 90l o010 /v 0
0 o 1 0/\o 0 0 1 0 0 1 0
0 0o 0 1 0 0 0 1
2y 0 0
Y ~¥
SO E
Y Y
0 0 1 0
0 0 0 1
2(1 v2> 0 0 0
v c? -1 0 0 0
_ , 2 [0 10 o)_
0 v?(1-=) 0 0 o 01 0] 9
0 0 Lo 0 0 0 1
0 0 0 1

Time in Minkowski spacetime compare 2 paths through Minkowski spacetime
ct

|

|

1 17
|
+
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What does an observer measure as "time"
"proper time" as measured in a frame of reference where the observer is at rest is t where
2 _ 242
s =—c"t
Infinitesimally,
ds? = —c%dt?
So observer 1 measures time elapsed as t where fp
ds? = —c%dt?

Similarly for observer 2, there the spacetime interval is fpath ,ds

ath 1 S 1s the spacetime interval and

But spacetime interval along path 2 is less than path 1

Because ds? = —c2dt? + dx? = path with biggest value of S is the one where there is no
motion in the space direction

This is the famous "astronaut paradox" astronaut 1 stays of earth

Astronaut 2 goes on a fast round trip to alpha centauri and back. When they meet back on earth
astronaut 2 is younger then astronaut 1

This is not a paradox because paths 1 and 2 are genuinely different. Path 1 is inertial, path 2 is
not. So there is no symmetry between them-> cannot say path 2 is at rest and path 1 moves
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3 Measurement of space and time

18 October 2011
10:45

3.1 Simultaneity
Simultaneity is not an absolute property of two events but depends on the frame of reference
Operational definition of simultaneity

Consider a rod of length L

Send a light signal from the midpoint.

this reaches the ends of the rod at the same time (measured in the rest frame of the rod
= tA - tB

ct

B

TA T_
[ ,| Line of simultaneity (fixed t, parallel to x axis)
t=0 X

L

Sow suppose rod is moving, with velocity v
Frame S' is co-moving with the rod

7\ = ct'
Line of simultaneity in frame S' t; = tg

= x'

L

In moving frame S', events A and B are considered simultaneous
Nb: uses both postulates of SR
1. Allows us to use same experimental definition of simultaneity
2. = speed of light is same in all frames

A ct’
=
o / .

0 ~
/X

Samet

This is why we use skew axes (ct’, x") in frame S'
Prove 6 = ¢
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XB = L +1.7tB L 1
L = ctg = —
= —+ CtB s 2 (1 — E)
2 c
(2)
2XB_.XA :CtB+CtA (1)

Obviously, t, # tp
However, by definition t; = tp

Angles
t X4 v
angp = —=—
¢ CtA Cc
ctg — ct, ctg — ct,
tang = -8 A _Cts A
Xg — Xy CtB + CtA
Using (1)
_lp—ty
Ctptty
v v
1t (1-2)
v v
1+z+(1-¢)
Using (2)

v

Check using Lorentz transformations
v
ct' = (ct — —x)
Y c
! (x d ct)
x'= ——
v c
L, v ct
x' axisist =0:>ct—zx=0=>tan0 =7 =

v X
t’axisisx’=0=>x——ct=0:tan¢=—t=
c c

3.2 faster than light/backwards in time
Suppose there exists a particle that can travel faster than light (Tachyon)

ct’

light

/;

Op is a faster than light path
In frame S, op is forwards in time ¢, > t,
In frame S', OP is backwards in time, t,, < ¢

= If a faster than light signal is possible, Then in some frames it is forwards in time, but in other
frames it is backwards in time
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tanf =

tana =

flan s

Where u is the speed of the tachyon
Backwards in time in S' if the relativity velocity of the frames satisfies
tanf > tana
v c?
S>—>—21>—
c u u
Directly from Lorentz transformation

For Op,
v
t' = t——
c y(c vcx)
- ——ct
x'=y (x C )x
Speed of tachyonu = 7

v
t’<0ifct—;x<0

VX
=>ct(1——2—)<0
cet
(1-23)=1-2u
c%t c?
.
>V > —

u

So far, this is not a terminal problem

The problem is that once we accept faster then light/backwards in time in some frame is possible,
Postulate I says that it is possible in all inertial frames in particular, it implies that if Op is possible,
then so is motion PQ

\ &

Q 4

Closed path OPQ is incompatible with causality ("grandfather" paradox)

3.3 Time dilation
Measure time differences in frames S and S'
ct'

ct

cT
(x=0)
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In frame S, time interval is T
In frame S', time interval is T'
Where

1 =y(r-5) ==
(sinceZ—’;= 0)

Remember

1
y=——>1

2
1-(z)
=>T'>T
This is Time Dilation
Now, consider instead a time difference between the events in the same place in S'

ct'

ct

Frame S', time interval =T'
Frame S, time interval =T
Where
, v

T=y (T + C—Zx)

=>T=yT'

SoT >T'
This must happen because postulate I says all inertial frames are the same
= relation between measurements in S and S' must be symmetric
NB: this means that the minimum time between 2 events is the time measured in the frame where
the events are at the same position
3.4 Length Contraction
Be very careful to be precise about what is being measured

1. Space dilation
This is similar to time dilation

ct
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1. Space dilation
This is similar to time dilation

ct'
ct

Frame S, distance=D
Frame S', distance = D'
Where

vt

D' =y<D —C—Z) =yD
Similarly

ct

Frame S', Distance =D’
(measured at same t")
Frame S, distance=D

_ l; U_t’_ ! 1]
D=y D+c2 =yD"'>D

Length Contraction
We need a definition of a measurement of length
Consider arod flength L in frame S
Defn of length:
Length=distance between ends of rod measured AT THE SAME TIME
ct'
ct
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Stop signal received

= Length S,
ButinS', L = x’Q - x5
Soin frame S,
Xq = L

v
cty = Ltanf = L—

c
= in frame S'
xg =v(xq — vtg)

t(’2=y(tQ—vi—§)=O

! vz
> L =y(L-—L

Since

Sincey > 1,L' <L

This is length contraction
Pole and garage "paradox”
Man carrying pole of length L' runs (fast) into a garage of length G garage is shorter than the pole,

G<L'
Paradox??

L=xp—x0

Garage frame- pole lengthis L = y~1L' < I

Can have L<G

Pole fits inside the garage
Man's frame- garage is length contracted
=Pole does not fit in garage

ct

of garage
<

signal "stop" sg
cannot be quic
light!!

Back of garage

- —

nt through pole -
ker than speed of
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Length of pole
measured in garage
frame when back of
pole receives stop
signal

/ine of simultaneity in man's frame

= if this is < G, the
pole instantaneously
(in S) fits into the
garage



Fv

Pole hits back of garage

Back of pole
Front of pole

Key points
Because signal speed is at most C, the back of the pole doesn't receive stop signal instantaneously,
so keeps moving = pole is being physically compressed!
It is because the pole is being compressed that it can (for a moment) fit into the garage
Then it expands back to its normal length, and comes to rest outside the garage
NB
"rigid bodies" are incompatible with special relativity because signal speeds are always <c
What is the max length of pole that fits into garage?

G=ct
L—-G=vt
:L=(1+E)G
c
But
L=y L
v
ﬁL’=y<1+—>
Ce

T longest pole that just fits into garage at speed v

3.5 Velocity Addition Rule

Suppose a particle moves at velocity u in frame S
What is it's velocity u' in frame S'

S' has velocity v relative to S

In 1dim
Lorentz transf
x' =y(x —vt)

t' =y(t—cizx)

So for constant speed

4

u’=x—= y(x — vt) _ 14
“ov(e-zx) v

_v )
2
, u-v
CwEI_m
c2
This replaces the newtonian result
u=u—v

This is a good approximation in the limit where u,v are much less than c

In 3dim
Let S" have velocity v along the x acis relative to S
Lorentz transformation

x' =y(x —vt)
y' =y
z'=z
v
t’=y(t—c—2x)
Uy — U
>u, = T
Ux¥
1 <
y y uy
Uy, ==—
y l vXx Uu,v
Cor(-%) (1-7F)
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uz
y(1-7F)
1. This can be turned into the velocity addition formula
Particle 1 moves with velocity u; relative to the laboratory, and particle 2 moves with velocity
u, relative to particle 1
=particle 2 speed in lab frame
Uy +uy
Uty
c2

u, =

1+

Conclude if u; and u, are both less than c, so is
Uy + Uy
14432
2. Consistency with postulate IB
Speed of light is the same in all frames

U — Uy
uu
1—2122
c2
If
, (c-v)
u=c=>u = v =€
c2
3. From
u—v
uv
1__
c2

Same simple algebra shows that

, uv
@) =y@y®)(1-—)
Stellar aberration

Apparent position of stars traces a small ellipse over the course of the earth's orbit around the sun
This effect can be calculated accurately using the velocity addition formula

- =sfar

A

Observer

Suppose observer moves towards the star with velocity v
In moving frame

L S A ,

U, = uxv_ ccosa
N

o Uy — : ’

U, uzv_ csina
1- 2
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- =sfar

H ®

Moving Observer
v
cosa + -
>cosa' = ————
1 +Ecosa
., sina
sina’ =

y (1 + gsin a)
We can tidy this up with a trig identity

) a sina
an—=———
2 1+4cosa

3.6 Doppler Effect

Frequency of light detected from a moving object is increased/decreased if the object is moving
towards/away from the observer

This is the Doppler effect

In Newtonian dynamics, there are two different Doppler formulae depending on whether

a. Source moves, detector stationary

b. Detector moves, source stationary
In special relativity, only the relative motion of source and detector is real= there is only one
Doppler formula that depends on the relative velocity

Consider a source moving with velocity v away from an observer (eg distant galaxy receding from
earth)

. . . 1
Let the time at source between successive maxima of wave be dt, = — where vy =freq at source
0

. . v
The observer measures a time difference dt + p dt — because source has moved

Where dt=time between wave maxima measured by observer
But special relativity (time dilation) = dt = ydt,

So
dtgps = dt +dt =y (1+2) dt
obs — c =Y c 0
-2
Vobs dtO - vyl _C_2
Vo tobs ¢ 1+ z
time dilation gives extra factor y
v
v -z
= obs — 1(,;
% L4
0 1+ c

Relativistic Doppler formula
V +'ve (source moving away) = Vs < Vg
redshift
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V -'ve (source approaching)= vy < v,y
Blueshift
Transverse Doppler effect
In special relativity (only) there is a doppler effect even when the source is moving orthogonal to
the direction of the signal
Vobs -1

Vg 'transverse
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4.1 Atomic Clocks and Time Dilation

07 November 2011
15:42

1971 Hafele & Keating fly atomic clocks around the world in opposite directions & compare
SR= clocks following different paths so should register different times,
Clock going east: 59ns slow
West: 273 ns fast
4.2 Muon decay
Lifetime of a muon atrestis ~107° s
U = e vy,

In 1966, CERN (small storage ring ~ 7m radius) with speeds 0.997c (&y = 12)

Lifetime was increased by a factor of 12
Time dilation
Repeated in 1978 with y = 29

For comparison, at LEP with energies 50GeV/beam y factor is 10°
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5 Relativistic dynamics

14 November 2011
10:08

5.1 Vectors in Minkowski Spacetime
We formulate dynamics in special relativity using the language of 4-vectors
Prototype 4-vector is the position 4-vector,
xt = (ct, g)

= (ct,x,y,2)

u= 0, 1, 2, 3

time space space space

Because it is a 4-vector, x* transforms as

x'* = LExv
v
Y VC
v
Ly=-v= v

z'=z
ANY 4-vector has the same lorentz transformations
We can make a quantity out of x# which is Lorentz invariant (doesn't change under a Lorentz
transformation)
s = guuxtx' = —c*tP +x® +y? + 2% = —c*tPdxxx
-1
1
Juv = 1
1

5.2 4-velocity
If we try to define the 4-velocity as
2 dxH
e
= dt
But this does NOT have the proper Lorentz transformation to be a 4-vector
To make a 4-vector we need to differentiate with respect to something which is itself Lorentz
invariant.
S2=—c?t>+xx*x
IS Lorentz invariant
Define the proper time 7, where $? = —c?12
T is the actual time measured in a co-moving frame i.e. along the particles path

So define the velocity 4-vector as

So U has the correct Lorentz transformations
Components-
dx* dtdx*

- ="
u dr dr dt
Now

2 2 2
X z
—c?t? = —c*t* + x* +y* + 2% = —c*t? (1 S A >

c2t2 %tz c?¢2
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= —c’t?y2()
= —c?1? = —c%t?y%(u)
=>71=ty (u)
dt
= =rW
This implies that
g
@ "War
= |U” = (y(wx,y(wu) |,since x* = (ct, x)
Check Invariant
JuwUPUY = =U°U° + UMU + UPU? + UPU3 = y?(—c* + u?) = —c?
5.3 4-momentum and mass
The 4-momentum is defined as
PH = mUH
So the mass M is a Lorentz invariant quantity (!!)
P* has the correct Lorentz transformations to be a 4-vector
[ts components are

|P* = (y(wme,y(Wmuw)|
The invariant formed from P* is

2.2

guwP*P? = —y*m*c® + y*m?u xu = —m?c
So
P? = g,,P*P¥ = —m?c?

That is, mass is the invariant quantity made from the 4-momentum (just like spacetime interval
$2 made from the position 4-vector x*
Interpret components of the 4-momentum
Write
Pt = (P%p)
p = 3 — momentum

- [p=vaom

NB This is different from the usual Newtonian definition by the factor y (u)

The "timelike" component
1

0 _ _(_u)?
PP=y(wmc=1|(1 2 mv

For small velocities u<<c, expand
1

u?\ 2 1u? ut
y(uw) =<1—C—2> = 1+__+0(c_“)

2 c?
o=order?
1 u?
>P2=1+-—+"-
12 c
o cP? =mc? + Emu2

Notice that the newtonian kinetic energy is 1/2 m
This motivates use to identify cP° as energy E

Thus
E
pr=(2.p)
c
E = y(w)mc?
P =y(wmu

4-momentum

= (z0)
= C'I_Q

Where
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p =y@Wmu
E = y(u)mc?

(1) 3-momentum p in special relativity is NOT p = mu but|p = y(uw)mu

For small velocities only (u < ¢),p » mu

(2) Identify y (u)mc? as energy E
Forsmallu < ¢

1
u?\ 2 1u?
=(1-=) ~1+=2=2+..
y(w) ( c2> tozt

NB

= E = mc? +§mu2 +
1

Emu2 — newtonian kinetic energy

mc? - new in special relativity
E # 0 even when particle is at rest

Call this the "rest energy”,
Eyest = mc?
If the particle is moving
E = y(w)mc?
E = mc? opens the possibility of extracting energy from reactions where the total mass of
constituents change

Lorentz transformations
We already know the lorentz transformations for any 4-vector. They are exactly the same as for
the position 4-vector
xt = (ct, x)
Dictionary
x” > p#
E

ct & —
C

xXep
Gt u? < gupHp”
So we can immediately write the Lorentz transformations for energy and 3-momentum
P = Lyp”
E"=yW)(E — vpy)
P =y @) (pe — E)
Py =Dy

Pz =Dz
For a transformation between frames S and S' with relative velocity v in the x-direction
This shows that BOTH energy and momentum change when measured in different frames

As with any 4-vector, we can construct a Lorentz invariant quantity from p# = (g, ;_))
Lorentz invariant is
Juwb"p”
= —p°p° +p'p' +p’p* + p°p°
EZ
=- C_z + DxPx + PyDy t D2P2

=__+T_7*T_)

Is invariant under Lorentz transformations
Evaluate
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EZ

—= +p*p=—-yW?m?c? + y(w)*m?u

U2
= —y2(u) (1 - 2)mc2 = —m?c?

2

c
— so the Lorentz invariant quantity is the mass

We find
E? — c?p*p = m?c*

E? — c2p? = m2c*

This holds for any frame
CHECK explicitly

E? — ¢2p'? = m2ctm

Using Lorentz transformations

Photons
Photons have zero mass
=>E?—c*p?=0
E = c|p|
Photon 4-momentu

-
pt=-p

For a massive particle, p# = (y(w)mec, y(u)mu)
The formula for a photon is the singular limit
m = 0,y(u) - oo
SuU-c
This is a consequence of the fact that a massless particle (photon) must travel at the speed of
light, u = ¢
5.4 Postulates of relativistic dynamics
To complete the formulation of dynamics in special relativity, we give the analogues of newton's
laws
1a. Equivalence of all inertial frames (there aren't? global inertial frames)
1b. Speed of light is the same in all inertial frames
Introduces a new fundamental constant c into physics

2. This introduces the idea of a force 4-vector

dP*
Ft = ——

dt
T = proper time
Generalises newtonian
ap
dt
o FH = (u) (1d_E d_B
BRASAI TR
So in particular
dp
I=4
In S. Rel
3. Dynamics takes place in spacetime.
Laws of physics are invariant under translations in space and time
Noether's theorem = conservation of 3-momentum and energy
i.e. invariance under translations in spacetime = conservation of 4-momentum p#

)= (7. vap)

In practice, to solve problems in relativistic dynamics, we use two main tools
1) Energy +3 momentum conservation

2.4

. 2
2) Energy-momentum mass relation E2 — ¢?|p|” =m
Remembering mass m is Lorentz invariant

c
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6 Relativistic collisions

21 November 2011
10:25

6.1 Compton effect

Collision between a photon and electron, in which the electron is initially at rest
After collision, photon loses energy = wavelength increases (red shifted)

1922, Compton, using x-rays

E,
P”=(;n2) Q* = (mc,0) .
.‘y,,ﬁ_..,,,,,.........,:.:'........
e
Before
Let
u 1
P = (ZEnp)
Q* = (mc,0)
=—E
mc - Ee
q=0
And

1
P (i)
! 1 ! 4
o= (Gea)
Use energy and momentum conservation separately
E,=E.+E,—E,

¢ =q+p-p

Energy-momentum-mass relation for photons
E, = C|B|

Ey = clp'|

Energy-momentum-mass relation for electron
2 2
E)* —c2|q'|” = m?c*
But
Ea—cﬂwf=(m@+w@P—4EDZ—¥(bV+MW?—ﬂmmWaw@

2
meet & 2me’(|p| = o) +c2(lel = ') — c2lpl* — 2l ", Ipllp’| cos 6
c* +2mc*(|p| - |p'|) — 2¢?[p||p’|(1 — cos 6)
Conclude
me([p| = p']) = Ipl|p’|(1 — cos6)
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Or,

! 1 !
E,—E, = mEyEy(l —cos )

So energy of scattered photon E, depends on the scattering angle 0
Bigger scattering angle <bigger energy loss

In quantum mechanics
hc
Ey =hv = 7

h
=>|1'—2=—(1-cos0)
mc

E,E,(1—cos6) = mc(E, — Ey)
6 ~ 0 small angle scattering £y, ~ E,,
0 bigger < Bigger energy loss, E), < E,
This is "normal” Compton scattering, i.e. where the photon loses energy
"Inverse" Compton scattering is where the photon is back-scattered from a high-energy
electron and gains energy.
This is important
1) Lab, to get high-energy photon beam
2) Astrophysics, i.e. gamma-ray burst

Compton scattering with 4-momentum notation

Notation
P.Q = g,,P*Q* = —P°Q° + P1Q' 4+ P2Q* + P3Q3
-1
_ 1
guu - 1
guuPMQu = PﬂguuQu =1*49)(A*4)4=*1)
=11 = number
pP? = JuuPHPY
So,e.g

So, using energy-momentum conservation in Compton scattering
PH 4+ QF =P'* +Q'H

= Q'"* =Q*+p+—p'H

So, using the energy-momentum-mass relation
Q?=Q%*+2Q.(P—P')+P2+PpP'?—-2P.P

Q2 = —m?2c?
Qz = —m2c2
P2 =pP?%=0

Q.(P—P)Y=P.P

1 1
—me (G~ o) =
Since
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!

E,E, E E
Tt + PP’ = L +|P||P| cos 6

c c

E E,
= — yzy (1 —-cosB)

c
E,Ey (1 —cos0) = mc?(E, — E;)
Reproducing the results already found

NB equivalence between these steps and those in the original derivation

6.2 Colliding Beams
Modern particle fall into two categories- colliders and fixed target

P.P' = -

In a collider, 2 beams are accelerated and stored in counter-rotating rings, then collided
head-on
Examples

LHC PP | 3.5TeVbeams
LEP ete™ |50-100GeV

-SpﬁS ‘pﬁ 270GeV
| | .CERN
-HERA ‘e‘p |

| | .DESY

+lots of other lower-energy e*e™
CERN
ISR,
Pp
Few GeV
In a fixed target accelerator, a high-energy beam of particles is scattered from a stationary
target
CERN: SPS p beam— O
270GeV beam
(super proton synchrotron)
Original PS ~27GeV
6.2 Colliding beams (cont)
The simplest example of a particle collider is LEP, which collided beams of e* and e~ with
equal energies, initially Epeqm = 50GeV
Two electrons

E
=)

B
7 =(50)
E = Epeam

Energy-momentum-mass relation
Recall P? = g, P*PY
EZ
=—P°P*+P.P=——+|P|?
, c
2 _ 2 _ 2.2
Pi = ——3+I|P|" = -m"c
EZ
2 _ 2 _ 2.2
Py = - +IBI" = -m%
Total 4-momentum
2E
PY =Pl + P = (T,(_))
This is in the lab frame. In this special case (only), this is also the Centre of Momentum (CM)
frame

In general, the CM frame is defined as the frame of reference where the total 3-momentum is
Zero.
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We can always find this frame by making an appropriate Lorentz transformation.
In the CM frame, the total energy E$M is available to make new particles eg at LEP, ete™ - Z
So at LEP
E’IqM — E%ab
=2x50=100GeV

Maximum mass of new particle is
2E

mTe
Not all colliders are symmetric
Eg at DESY, the e™p collider HERA collided beams of e~ with energy 26 GeV and with energy
840 GeV
Electron 4-momentum

E
u _ 1
o= (2n)
Proton 4-momentum
E
u _ 2
B =(7e)
Energy-momentum-mass relations,
EZ
P{ = —— +|B| = —mic?
m, = electron mass = 0.5MeV
EZ
P == +|P|* = —mjc?

m, = proton mass = 1GeV
Total 4-momentum in LAB frame

Ei+E
P =(222p+p)

By definition, in CM frame
E{+E E
P#CM=< lc 2'Q>=(ﬂ.9)

c
Problem is to find Ey,
2 ways
1) Explicitly work out the velocity v of the CM frame S’ relative to LAB frame S, so
that P; + P, = 0 then calculate E{ + E}, using Lorentz transformation. -usually

relatively hard
2) The quantity PZ = —gm,PT”P%’ is Lorentz invariant, so is the same whether we
evaluate in LAB frame S or the CM frame S'
LAB frame

Ey + Ep\
PP=— (2] + @ +P)+ (B +P)

E_E 2 4 1P
=-2 "2 2EE+ B +IR]7+ 2P P,
2E,E,

= —m2c? —m3c? — 2~ 2|Bl|P|

By definition, in CM frame

E,+E E
(B ) -
c c

CM frame
pH = _@
TCM — c2
Since

PZ oy = mic* + mic* + 2E.E, + 2|P||P;|c?
In general, this is the final result. (remembering |P; | and |P,| are given in

2
terms of energies E; and E, by — % + |P;|?2 = —m?2c? etc)

In practice, eg at HERA, masses are small compared to beam energies
Since
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myc? &« E;,myc? K E,, we can neglect my,m, and c|P;| = E, c|P,| =
E;
So to an excellent approximation

E%y ~ 4E,E, = |Ecy ~ 2\JELE,
This is the general result for an asymmetric, high-energy collider where
Epeqm > mass
Clearly, in the special case of equal energy-beams, E; = E;, = Epoqm
= Ecy = 2Epeqm as for LEP
6.3 Fixed target accelerators
Eg SPS (super-proton-synchrotron) at CERN
Proton beam Epp4p, = 270GeV
Collides with a fixed proton target

E
H=(C7)
Accelerated proton
PZ” = (MCI Q)
Rest proton, m=mass of proton
E + Mc?
rpmntert = (E )

In CM frame, by definition,

E,
u _ CM
Pow=(-2,0)
Lorentz invariant

2 — p2
PTCM _PTLAB

Now,
2 EEM
Prem = Tz
(E + Mc?)?
PTZ"LAB = ) |P|?
EZ
= _c_2+ |P|?> — 2EM — M?c?
EZ
— =+ IPI* = —M2c?
c
= —2EM — 2M?c?
So we find

EZy = 2EMc? + 2M?c*
For high energy accelerators, E,pqm > Mc?
So an excellent approximation is

EZy ~ 2EMc?

= |Ecy = 2EMc?

Compare collider

Ecy = 2 E1E,

So for a given beam energy, E, is much bigger for a collider

Energy conservation

E1+mC2 :E2 +E3

3-momentum conservation

P1 = P3 + P4

Where 8 = 65 + 0,

1 = P + |Py|” + 2|Ps1Py] cos 6

Consider a special case where the particle separate with equal energies
Assume E; = E,
=P =P,
= 93 = 94

ndLe!
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By conservation of transverse momentum

So the conservation equations simplify
E1 + mCz = 2E3
1
E? —m?c* = 2(E2 — m2c*)(1 + cos 6)
2
Using E? — c2|;_91|2 = m?c* etc
Now solve these to find scattering angle 6 as a function of the initial beam energy E;
Algebra,
1= EZ —m?c* = (E; + mc?)(E;, — mc?) = 4E;(E; — mc?)
Compare 1 and 2
= 4E5(E; —mc?) = 2(EZ — m%c*)(1 + cos0) = 2(E; + mc?)(E; — mc?)(1 + cos 6)

1+ cos@ i
= - - @
€08 2(E3 + mc?)
E; —mc?
= c0sl =——
Es + mc?
Finally, substitute for E; using 2E; = E; + mc?
0 E; —mc?
= e —
c0s E; + 3mc?

Atlow energies, E; ~ mc?

= cosf =0 0 =90°

So the particles scatter at right angles

this is the well known result in Newtonian dynamics (snooker without spin)

At high energies, E; > mc?

>cosf~10=0

The higher the energy, the smaller the scattering angle. The particles are scattered into a
narrow forward cone. This is a very general result in relativistic scattering.

2+2 scattering in the CM frame
The analysis above was for the lab frame. Now recover the same result in the CM frame

~~

Momenta are equal and opposite in x-direction

Suppose the relative velocity of the CM frame and lab frame is v

= EM = y(v)m

Now we showed previously that the total CM energy for fixed-target scattering is

ECM =4/ Zm(E + m)
1
EM = Ew/Zm(E +m)

And since EM = y(v)m
1
= =—.2m(E
y(v) T m(E +m)

E+m
2m

This determines the velocity v at the CM frame relative to the LAB frame
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7 Electromagnetism

05 December 2011
10:20

A chae at rest in frame S has only an electric field.

I}

But in frame S' (moving with velocity v in x-direction), this will appear to be a current = in S' there will also be a
magnetic field

Electric & magnetic fields transform into each other as we change frames

Lorentz transformations
Ey = Ex:Ej, = y()(E, — vB,):E; = y(v)(E, + vB,)

By = By:By = y(v) (B, + %Ez) :B; =y(v) (B, + :—zEy)

Identify E and B fields by there effect on a test charge q given by lorentz force f = q(E + u X B)

u =Velocity of charge q
Since we know how force transforms between S and S', we can use the lorentz force law to deduce the
transformation of E and B

7.1 Lorentz transformations for force
These are implicit in section 5 where we write the Lorentz transformations for the 4 -force F*
Explicitly:-

N S (A
I=g?=>l"=g@? =\a) &P

px =v(@) (px - z—f)

Dy = Dy

Pz =D

:>d . ()(dpx vdE)
acPx TV T e
d , d

acty T achy

Calculate dE T—
dt
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E? = c?p.p + m?c*

But

So

7.2 Electric and magnetic fields

Consider a simple configuration of a charge Q with a test charge q

y S
g /E=;:x: uy!o)
b2
X
¥ g
A
u= (0' Uy, 0)
q
X

S' moving with velocity v w.r.t. S

In frame S, the force experienced by the test charge is

f= (Ony'O)
Where

1 Q

fy =qee= e, y?

In frame S', the force is
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fi= ; 1ux2v) (£~ Suf)

C

- @(fx - v — S fy) = )2 2 qe
2
‘ vuy,

=-y() C—zqf
fy = @fy =y()qe

CZ

fi=0
Now use the Lorentz force law to deduce E' and B’ fields
v

= E =(0,y(v)¢0),B" = (0,0, —y() C—ze)

In frame S’
Since [ = q(E" +u' x B")
Compare

E =(0,¢0),B = (0,0,0)

In frame S

Check that the special case agrees with the general lorentz transformations for E and B given above

7.3 Electromagnetic field tensor
We have justified the following lorentz transformations for components of the electric & magnetic field vectors

Ey=E, E,=y(w)(E,—vB,) E;=yW)(E,+vBy)
! ! v 4 v
Bi—B. By =y®) (B, +=E) B =yw)(B,~3E,)
We would like to describe these in the same way as for 4-vector eg
x'=Lx e x'"=1" xv
P'=LPo P+ =1" P

Where
yv

1

To incorporate the 6 components of E and B, put them into an antisymmetric 4*4 matrix F*¥

1E 1E 1E
c ¥ c Y c?

1

o _ ~Ex -B, B,
1
“E, B —B,
1
~E, -B, B

Geometrically, this is called a Tensor
We can check that the lorentz transformations are equivalent to
F'=LFLT
& Fv =" FPO(LT),Y
F'v — LﬂvaO_FpO'

Note: Electromagnetism (Maxwell's equations) is already fully consistent with relativity, unlike Newtonian
dynamics

No EM in jan exam

PH-221 Page 64



Higgs Boson

13 December 2011
10:28

LEP

Ecy = 206GeV
Epeam = 103GeV

Limit

my = 209 —91
= 115GeV

m, =91GeV

LEP didn't see H (shut down in 2000)
= my > 115GeV

LHC u
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H
—_— — — * —_—
OR

—_ —_ — - — —
my ~ 126GeV?]

PH-221 Page 67




Mathematical Methods

04 October 2011
10:55

Linear algebra
Vector calculus

Essential Mathematical Methods for the physical sciences
K.F. Riley and M. P. Hobson
CUP 2011

Cont assessment

4-5 exercise classes
~1 hour

MxN matrix: M rows and N columns

%1
Vector v = <V2)

U3
Column vector
w=W w; Wwz)
Row vector

Transpose T
Swapping rows and columns
Trace of a matrix
Tr A = Y.diagonal elements
N

i=1
Multiplication
AB=C

Cij = Z it by j

k
AB # BA
TrC=Tr AB = Tr BA

Tr C = Z Cii
i
= z z @by
ik
= z byia

ijk
=tr BA
Tr BCA =tr CAB = tr BCA

Linear Algebra
Vectorspace v
w + U = u addition
Av = w multiplication

A+B=C provided that they are the same size
AM =B 1€C
(A+B)y =Av+ Bv
A(AD) = 14D
Products AB, AA = A2
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A ... A=A4A"

n
Functions of matrices
oA
[ee]
1 ) 1 3 1
e*=1+x+-x"+—-x>+-= ) —x"
2 6 n!
n=0
€A — iAn
n!
n=0

=evaluate this bitches!
This is fundamental in QM
Heisenberg matrix mechanics
Hamiltonian H
Time evolution etHt
Book: section 1.1-1.5

Inverse

Numbersy = ax x = %y =aly
y = A%

x=A"1y

2x2 exampley = Ax; x = A"y

6= ()

{yl = ax; + bx, .C
Yy, = cxq +dx, .a
cy;1 — ay, = acx, + bcx, —acxy — adx, = (bc — ad)x,
X2 = he — ad (cy; —ay»)
X1 = he — Cid (by, — dy1)
X1\ _ d —b\(Y1\_ 41
(xz) - adl— bc (—c a )(3’2) Ay
1 d —b
A = d—he (—c a )
Inverse exists except when
ad —bc=0

A1 exists, provided det 4 # 0
Properties (general, verify for 2x2 matrices)

Product rule:
detAB = detAdetB
A"YA = I = identity matrix (detl = 1)
detA™?
detA A =detl =1

1
=detA 1detAd = detd™ 1 = ——
€ € © detA

det kA multiply every matrix element by k
= kN detA

Minor:
M;; =det(matrix with I'th row and j'th column deleted)

2 3 1
A= <—4 8 0>
10 -1 5

M11=|_81 g|=40—0=40
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120 ?
M3 = _4 0|=0'—'—4=4
Cofactor C;; = (—1)'*/ M;;
(- =1ifi+jiseven —1if odd
detA = z A;iCij

along row
or column

Ex: Expand along first row
detA = 2Cy1 + 3C5 + 1Cy5
= 2(=1)?M;; + 3(=1)*My, + 1(=1)*M;;
=2X40+3(-20)+ 1(-76)
=80+60—76 =064

Expand along second row
detA = —4Cy1 + 8Cy, + 00,5
= —4(=1)°My; + 8(=1)*My,

= 4|—31 ]5L| + 8|120 é|
= 4(15 + 1) + 8(10 — 10) = 64

—20

4x4 matrix

Minors are dets of 3x3 matrices
For 3x3

Apr A Az

A1 Az Aps

Az1 Azp Az

= A11A22A33 + A12A23A31 + A13A21A32 - A11A23A32 - A12A21A33 - A22A13A31
Special matrices
All

Ann
Diagonal matrix diag (411,422, Az3, .., ANN)

detA = A11A22A33 "'ANN

Aqq
! 1)
Ay
At = 1
Aszz
)
1
Ann
Upper|lower triangular
Ay A1z Ags
Azz Apz
i
det() = A11 22 A23 + 0 + 0 == A11A22A33
33
Transpose AT
(AD)ij = Aj

det(AT) = detA
Complex conjugate *

det(4*) = (detA)”
Hermitian conjugate

A\dageer = A dagger = AT*
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Symmetric matrices AT = 4
Antisymmetric: AT = —A
Hermitian A\da8ger = 4
Antihermitian A\d288er — _ 4
Orthogonal matrices

ATA =1

Real matrix elements

2 vectors (real)

X,y
Interproduct
y'x
X1 V1
#= () 7= (2)
X3 V3
yi=01 Y2 ¥3)
yix=yx*x
X1
1 Y2 ¥3) <x2>
X3
Y1X1 + Y2X2 + y3X3
X — Ax
y—- Ay
(AB)T BT AT

yTx - (AY)TAx = yTATAx = yTx
Orthogonal transformation preserves the interproduct rotations

det(ATA) =detl1 =1

= det AT detA = (detA)"2

detA = +1 (+1 = rotations

Complex numbers

x = Ux unitary

y - Uy

Unitary matrix

U\daggerU =1

Perserve inner product

y'E - (Uy)'Ux

ydagger daggerux — ydaggerx
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Eigenvalues and Eigenvectors

11 October 2011
11:05

Ex

A:(zlL —21)

Consider a vector
_ 1
G
Aw = (4 —1) (2) - (2)

Nothing special
Let's now take

v= (—12)
= 2)(4)=(2)=5(

¥ is an eigenvector of A

Av = Av
A=matrix
A=number (complex or real)
v=eigenvector of A
A is called an eigenvalue
= appear all over physics

- Vibrations

- Crystals

_QM

Solve AV = AV find A
>A-ADv=0
0
Always v = 0
0
Trivial solution: not interesting
Nontrivial solution
To have a nontrivial solution, should not be able to invert (A — AI)
—>det(A—A) =0
=polynomial eq in A
= |characteristic equati0n|
N« N matrix: AN + AN+ .4+ A+¢c=0
Coefficientof AN"1 = Tr A
Check: proof will follow
N

Tr A= Z A; (sum)
i=1

N
detA = H)Ll- (product)
i=1

In general, 1 € C

a b
A(C d)ﬂ b

a—
det( c d—/l)
=(@a-2){d—-2)—bc=22—-Aa+d)+ad—bc=0

a+d 1
1=— iz\/(a+d)2—4ad+4bc
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a+d) 1
,1=( > )iz\/(a—d)2+4bc
Complex if

(a—d)?+4bc<0
If b=c

a+d) 1

( > )iz\/(a—d)2+4b2 >0

Real

Symmetric matrix has real eigenvalues

Ex
_(a by _ ,r
a=(y %)=4
Eigenvalues/eigenvectors

Av = Av\baar
1. Aeigenvalue
det(A —Al) =0
2. Find eigenvectors
Eigenvectors are determined uniquely except for the overall normalization. (they can have
different magnitudes, but same direction)

1=

If ¥ is an eigenvector, then v’ = k7 is also eigenvector (k € C)
Av = Av
AV = A(kvV) = kAU = kAU = A(kD) = AV’

Diagonal matrix
A=y Z)a=sm=())a=-30=(5)

_(3 0
b= (o _3)
-eigenvalues in diagonal

We can transform A into D iva a transformation called diagonalization
Let's combine the eigenvectors in a matrix S

S=W1 v2)
AS =AW, Uy)
Statement:
Similarity transformation
S71AS
Diagonalizes A
1 1
5= (1 —2)

1,29 1\ 1
5_1:—_3(—i 11)25@ )

Verify S™15 =1

1 1 1
STAS = 5(2 —11) (zlL —21) (1 —12) - 5(2 —11) (g —36) - 5(8 —09) = (g —03) =P
Tr AB = Tr BA

N
>tr(ST1AS) =trD = Z/ll-
i=1
Tr(ASS™ ) =tr A
det(AB) = detAdetB
N
det(s145) = detd = | |4,
i=0
detS~ldetAdetS = det(SS™1)detA = detA
Ex
0 1 0
A= (1 0 1>
010

AT =4
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TrA=0

detA =0
[IA = 0 = at least 1 eigenvalue should be 0
YA=0=>1=0,+a,—a

0
-1 1 0
‘ 1 -1 1|=-2+21=0
0 1 -2
Characteristic eq
—-2A?=-2)=0
0

A= 2
—V2
Eigenvectors
1. A=0

x+2z=12y =x=2z
y =V2z y =V2x
1
1

1
n=(-2)
1
0 0
=551 s714s=(0 V2 0)
0 —2

(e)

(e}

Matrix A
Eigenvalues A
det(A—Al) =0
Eigenvectors v
Av = Av

s=(7 72 )

S71AS =D

A
D = < Az )
A3

i
(AB)dag — BdagAdag
Hermetian matrix
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H%9 = H

Suppose v is an eigenvector
Hv = Av

(HD)*9 = (Ap)4as
17alagHalag — A*ﬁdag

= pdagy
Hv = Av
1
17dagH — A*ﬁdag
2
7990y

3 inner product

1:3 = %95 = Ay
2 =2"p%95 >
Avdady = *pdady

V1

74995 >0 7 = <Vz),17d“917 = |v11% + |v,% + w312 > 0
U3

> A -9 =0

>1=1
Real eigenvalue
if HY%9 = H,then A* = A

Lets consider 14, 1,
3 Hvy, = 4414
4‘ H‘EZ = AZ‘EZ
—dag ;- __ -dag, - __ —dag -
v, "HUy =v, "MV, =4V, "1y
= Azﬁda‘gﬁl
(A1 — Az)ﬁzdagﬂ =0
= 755,
Eigenvectors are orthogonal innerproduct =0
Eigenvectors of hermitian matrix with distinct eigenvalues are orthogonal
Normalize eigenvectros
If 5095, = ¢
_ 1
Thenw; = 7
is also an eigenvector

—dag— _ 11 _dag- __ 4. .
And w; 7w, = R = 1 is normalized
So
_dag — —dag _ -dag- __
vld V1+v, =0, Up=1
sdag s _
vy U, =0

vyand 7, form an orthonormal set or a basis

-dag - _
'l]i 'Uj = 61]
- _ lifi=j
Y0 otherwise
Hermetian matrix can be diagonalized by a unitary transformation

In general
ST'AD =D
S™'HS =D

M
D= < > = pdag
An

So
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Ddag =D = (S—lHS)dag — SdangagS—ldag — SdagHS—ldag
= STIHS = s4a9g§—1dag
§%9 = §~1 = §is unitary
U%9HU = D
All of this holds also for symmetric real matrices
A!Aij eER
AT = A
AER
vl 7j = 8y
0TAO =D
Orthogonal transformation

Ex
(2 2=0\_ ,dag
H_(2+i 6)_H
TrH=2+6=8
detH=2%6-(2+0)2—-)=12—-4-1=7

Eigenvalues

det(H —AT) = |2 ~4 2= @-n6-N-@+DE-1)
240 6-—2

AP—-81+7=QA-7)1-1)=0

Al=7,lz =1

_ _ 2 2—10\ (X% X
Ai:Hv1—7v1:>(2+l_ 6)(y)_7(y)
2+Q2-Dy=7x:5x=2—-1i)y
R+idx+6y=7y:y=02+i)x
= solution

x=1 _ o _ (1) jaa0; _ N1 _ B
y=2+i:v1_(2+i)'v1 v =1 2—1)(2_i)—1+5—6
Normalize
_ 1 1 Hﬁ1:7ﬁl
vl_ﬁ(2+i)’ﬁ1‘mgﬁl=1
A2=1:H172=1172
2 2—10\(X\ _ (X
(2+i 6 )(y)_(y)
2X+(2—i)y=x:>x=_(2_i)y =>x=—2+l'
(2+i)x+6y:y 5y = —(2 + i)x y=1

5, = (—21+ l)

=>172=i(_2+i)

NA!
test
7599, = 0?
%%(—Z—i 1)(_21+i)=%(—2—i+2+i)=0

i -2+

—\ L

U= 2\/+€i f =ﬁ(_21—i 21+l)

V6 V6
Udag_%(—zl—i )
e A BRI ARE)
UdagHU=---=(g 2)

PH-206 Page 76



A=S"1AS=D
HY99 = H:U%9HY = D
AT = A: 099940 = D

oAV 1 AA2 A3

A __ _ — - -
e =) & 0| -+ 5 + 30 + -
n=0
AN = SDS‘15DS‘1SDS‘1 ..SDS™1 =gspns-1
=|A=SDS!
f1 @ f£ @ T (0}
D = f2 ,DZZ f22 ,Dn= on
2 fa f2 ) fa
An DTl Dn
B EPRTE (z-)
n! n! n!
n=0 f%
1
) )
D" f2!
Zn_ = n!
n
fa'
0 Tl

It's because we don't have D™ but ¥ D" you also sum each matrix to get this result
ef1 1)
efZ

@ ef‘rl
A SeDS—l
detA = det(SePS1) = detS dete” detS~! = dete?

et [0}

e4 = SePS™1
dete4 = detSePS1 = detSdetdP? detS~! = dete?

detA = 1_[,11-

4
deteD — e/".lelzeﬂg ...ellN — e/11+/12+13++/1N — eZL”ll — eTT(A)

detel = 774

Expand
AZ BZ A2 BZ
eAeB=<1+A+7+---><1+B+7+---)=1+A+B+7+7+AB+---

1
eAth =1+A+B+5(A+B)A+B)+-

1
= 1+A+B+E(A2 +AB + BA+ B?) + -~
They differ!

1
AB © > (AB + BA)

AB # BA!
eAeB + €A+B
[A,B] = AB — BA

Correct for the mismatch by adding commutators
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1 1
5 (AB +BA) +5[A,B] = AB

Campbell-baker-hausdorff formula

1 1 1
eApB — eA+B+E[A,B]+ﬁ[A,[A,B]]—§[B,[A,B]]+---

[B,[A,B]| » B[A,B] — [A,B]B = B(AB — BA) — (AB — BA)B
Suppose we have two hermitian N*N matrices
A= Adag,B — Bdag
When do these have a common set of eigenvectors?
Can be diagonalized simultaneously?
Answer: if A and B commute
[A,B]=AB—BA=0
i) Av; = A4;0;,A; all dif ferent
Lets assume AB=BA
ABﬁl = BA'EL = B}liﬁi = AiBﬁi
If v; is the eigenvector of A, then so is Bv; with the same eigenvalue
Every eigenvector is uniquely determined up to normalization
B~
= Bv; = y;v;, W; scalar
V; is indeed an eigenvector of B with eigenvalues y;
ii) Let's assume

Aﬁl’ = Aiﬁi
By = pu;v;

Common set of eigenvectors
ﬁi + ﬁi = 61]

Orthogonal set basis
Every vector can be written as

X = Z Ciﬁi
i
ABx = Z Cidili Vg
i
BAx = Z Cilll"lliﬁl'
L
= ABX = BAxVx
AB = BA
Commute!
Degenerate eigenvalues
If H = H%9 or MT = M then eigenvectors form a basis, i.e. they form an orthogonal set
—dag - _
Ul- Uj = 51]
i,j label the eigenvectors
5= lifi=j
U= 0ifi+]j
This is true when all A;'s are distinct. If some A;'s are degenerate (equal), this is correct, but
requires still some more work

1 0 3
A= <0 -2 0)
3 0 1

AT=A:2€R
TrA=0
detA=-2+0+0—-0—0+18 =16
1-1 0 3 -1 3
daM—MD=‘O —2-2 0‘=ca—@ =-+2)((A-1%2-9)
3 1-21

3 0 1-21
=0
A=—2

1-1)2-9=0>1-1)?%2=9
A-1=43:1=4, 1=-2
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A=4,-2,-2

Degenerate
1 0 3\ /X X
/1=4:<0 -2 0)(}/):4(3/)
3 0 17z z
x+3z=4x x=2z 1 1
= —2y=4y =>3’=0:>17=—<0>,17da917=1
3x+z=4z Xx=2z V2 1

1 0 3\ /x X
A=-=2: (O -2 0) <y> =-2 <)’>
3 0 1/ \z Z

x+3z=-2x x=-—z 1 -1 a
S ()G ()
3x+z=-2z Xx=-Z -1 1 —a

All eigenvectors
Chose two eigenvectors and make them orthogonal

B 1 /1 ) 0
== () =()

7 07 = 8
1
U3 = ( 1 >is eigenvector
-1
But not orthogonal to v,
BB: sheet with algebra

PH-206 Page 79



Vector calculus and Integration

01 November 2011
14:46

2d 3d integrals-> integral theorem
Conservative vector fields => em maxwell equations

fbf(x)dx

Divide interval a<x<b in N subintervals of length Ax such thatbh — a = NAx
In each interval pick a point x; ;=1,...,N

Assume f(x) is constant in each subinterval

Add together the area for each subinterval

N
PIEIED
i=1

This becomes a better approximation as Ax — 0

Definition
b N
f f(x)dx = lim ZAx f(xi)
a N—-oo :
i=1
With

a
NAx=b—a=Ax - 0if N ,N - o0

b N
[ o= fim 3 reoms
i=0

1 ,V1—x2 1
ffdxdyxy=f f Xy =—
o Jo 8

forx?+y?=1

r=\ty
x =1rcos6
y =rsin6
0<r<i1

0<g <™
2

1 E
ffdxdyf(x,t)z)f dr fzde...
0 0

Ar

AO
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|AB|.|AD|
A
1
r
®/2
|AB| = Ar
|AD| =7

¢ -0
|AB||AD| = Ar rA¢
=71 Ar A0
Jacobian:
J=r
For polar coordinates
[[dxdy f(x,t)= [drdé r f(rcos@,rsinf)
[ [ dxdyl = area

a 21 a 2T 1 a 27T a
f dr d9r1=f drr d9=—r2| 9| =—2m = na?
0 0 0 0 2 0 2
ffdxdyxy

1 T
2
—f drf dérrcosOrsinf
0 0

fldrr3f2d9 0 si 9—(—1r4|1) ——1 29|2 ——1 ——12 0-1) __18
= = * =
, . COosS U sin 0 CoSs o

[ [ dxdy /x? + y?
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From 1 to 2

2 T 2 T 1 2 T 71
fdrf d9rr=fdrr2f dd==r3| t==(8-1)=—
1 0 1 0 3 1 3 3

3d integrals
J I | dxdydz f(x,y,2)

Ex
f=1

[ [ [ dxdydz 1 = volume of v
Ex

f,y,z) =n(x,y,2)
Mass density [%]

f j f dxdydz n(x,y,z) = M = total mass inside volume
v

a a a
jdxf dyj dx1
0 0 0

a a
=x| y| Z| =axa*xa=a’
0" lo lo
Sphere radius a volume
4 A3
37

Rotational symmetry
= spherical coordinates

Last time: 2d, 3d integral
Rotational symmetry
2D:
Polar coordinates
X =71cos¢
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y=rsing

Y e s

J J daxdy f(x,v)
= [drfd¢r f(rcos¢,rsing)
Incjacobianr
—00 <X,y < 0
0<r<o
0<¢p<2m
y>0e0<p<m
3D

(x,y,2)

sl

0
projection in xy-plane
r

T
T,
p
p sin 6

X =rcos¢sinfd
y=rsin¢gsinf
x =r1rcosf
Spherical coordinates
-0 <Xx,y,z<®©
0<r<ow
0<¢p<2m
0<o<m

[J ] dxdydzf (x,y,2)
Jdrfdef dojf(x,y,2)

J=jacobian "change of variables

Jacobian for spherical coordinates

] =r?sin6
Ex
Sphere
0<r<a
0<¢<2m
0<b<m

Volume of this sphere

a 2 T
f drf dq,’)f d9r?siné
0 0 0

a 2T T
_[ dr rzj d(;bf df sinf
0 0 0

1 a

[§r3]0 [B137[— cos 017
a3

=?*2TL’*(— -1--1)
_A4m
Hemisphere

0<g <™
2

Jacobian is the elementary volume, obtained by changing
r->1+Ar
6 -0+A6

¢ —>¢+Ap

3
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[ in cartesian coordinates

AxAydz

r-o>r+Ar
One side Ar

0-0+A0
or i (Ae)
r sin >
- rAf
ArrAfB rsinf Ag

=1r2sinf Ar AGAP
r2sin@ = jacobian
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Partial differentiation

16 November 2011
11:04

1 variable x, f(x)
2 variables f(x,t)
Partial derivaties
5f(x,y)
6x '
5f(x,y)

ox
3 2nd derivatives

8%f 8%f 6%f B 5%f
S5x2'8y?’ 6x8y  Sydx

yis fixed

,x is fixed

Ex f(x,y) = x3y + y?sinx

) _a,2 2
gx 3x%y + y“cosx
é=x3+2ysinx
5% f

— = — v2qi
% 6xy — y“sinx
8% f
8y?
6 (6f 6 (6f )
_— = — — = 2 =
6y(8x) 6x<6y> 3x7 + 2y cosx

= 2sinx
62

6xdy

Change of variables
1D

J dyf ()

x=x(u)

dx = (6x>d
X = 5u u

[ du (g—Z) f(x(u))

ox acobi
—_—
50 jacobian

N3
-f dx x sin x?
0

x=qu

dx = —du =——=du

Su 2\Ju
= du——=+/usinu
0 2\Ju

Ex

T o1
= | du=si
j(; u251nu

1 14
= —Ecosu|0 =1

Change of variables in more dimensions
xyz)=(uv,w)
le

x=x(1,v,w)

y=y(u,v,w)
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z=z(u,v,w)
Here
ox O0x

su’ Sv

8y
ou

Etx

9 different partial derivatives
Jacobian= absolute value of

6x Ox Ox
du dv ow
Sy 8y 6y 6(x,y,2)
det| = = = |=——-—-<
ou o6v Sw o(u, v,w)
6z 6z 6z
u v Sw :
XY,z
I dndyds £ (53,2 = [ duco [ 522 (x0), 79, 5609)
Ex 2dd polar coordinates
x=x(r,¢p) =rcos¢
y=y(r ¢) =rsing
6x Ox
§(x,y) 5 8¢\ cos¢ —rsing) ) o
6(r,¢>)_dEt Sy 8y _det<sinq§ rcos¢)—rcos ¢+rsin“p=r
or 6¢

Ex 3d Spherical coordinates
(x, Y, Z) - (7", ¢' 9)

X =rcos¢sinb

y =rsingsinf

z=rcosf

cp = cosp
sO =sin@

5(x,y,7) cpsld —rspsO rcpch
= det (sqbs@ rcgso rs¢c9> = +r?sin@

8(r, (]5,(9) ) co 0 —rs6
6(x,y,z )
5G| "

Ex [, dx dy xy
p=bounded region

y=2X,

y=X

y=2x-2,

y=x+1
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Y=2%, y=X, ¥=2%-2, y=x+1 &% Wolfram

Change of variables

X=Uu-v
y=2u-v
ox Ox
Su ov|_ 1 -11_ _
det| & 5 =], Tjf=-1+2=1
ou ov
[f dudv 1(u —v)Qu — v)
Boundaries

y=2x:2u—v=2(u—v):v=20
y=2x—-2:2u—-v=2u—-2v—2:v=-2
y=x:2u—v=u—v:u=20
y=x+1L2u—-v=u—-v+LlLu=1
-2<v<0

O<u<1

fodvfldu (u—v)Qu-—v)
-2 0

0 1
=f dvf du u? —3uv +v?) =7
-2 Jo
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Line integrals

16 November 2011
11:38

Work done by force
Particlema = F
3d:F (7) = (F.(7), F,(7), F,(7))
Vector field
Work = distance * force
Ex simplest
Particle moves in straight line
Constant force
F = (F,F,F,)
Displacement
7 —7
Work:
Fx(m—1)
=F(x —x1) + B,(y2 = 1) + F (22 — z1)

Curved path
Nonconstant force

Consider a small interval
ro>1r+Ar

F(7) is approximately constant

Wyr = F(¥) * AT

Add all small contributions together
Total work

N

W= F(AR
i=1

N - oo

W= j F(r)dr
c

Line integral

Work:

f F(dr=w

Cc

7(t)

F(7)
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Mechanics
7(t)
t=time
F(r)
F = mz d*r

=ma=m-—s
__dv
T
__dar
VT
w = [ Fdr

d’r
= mf Wdr
r(t) >t
Jacobian:
dr(t) = dfdt
=4

W fdtdf d*r fdt‘d—

= —_— = P

m de a2 " T
P = (52)
Vac' T 2ac

=mf dt (1 172> = 1m172 |tﬁnal = Akinetic energy = work
B dt\2 2 timittal et gy=w

d
fdta & total derivative

_ b da(t) -
f F(f)df=f dt ®) «F(a(0))
7 ti dt
F(t) = (0x(8), 0, (1), 0, (1))
Path in 3d space
t=time, paramiterisation of path

Ex
F(@) = (x%,2,3x + 2y)
alt) =(t,t31),0<t<1
Plot
10f t=1
[ / y=x
i /
o8 ;
[].[ﬁ:—
[].4:-
ozf - z=1
: t=0 _____'__.,-o-"'f
0.2 0.4 0@ 08 1.0
y=t"3 from t=0to t=1 & Wolfram.

T -
def:f dt%*ﬁ(&(t))
0
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dE—(lBtZ 0)
TN
F(a(®) = (¢% 1,3t + 2¢%)
x->ty->tdzo1
do _
EF=1*t2+3t2*1i(3t+2t3)

= 4t
1 4 1 4
:>Jdt4t2=—t3 ==
0 3 o 3

2d example,
F(x,y) = (2xy,x* + axy) = (F, F,)
c1:(0,0) - (1,0) - (1,1)
c,:(0,0) = (1,1) along diagonal, y=x
c3:(0,0) - (0,1) » (1,1)

= ¢

W, = [ dF x F(x,y) = [ dxF,(x,y)[ dyF, (x,y)
F = (E,F,),dr = (dx,dy)
a(0,0) - (1,0):0<x<1,y=0=>dy=0

1 1 1

Wiq = J dx E.(x,0) + 0 = f dx(2xy)y=o = j dx0=0
0 0 0

b(1,0) > (L,D)x=10<y<1,dx=0

1 1 1 a
Wlb:0+f dyFy(l,y)=f dy(1+ay)=y+§ay2|5=1+§
0 0

W, =1+
=272
G,
y=x,dy =dx
dy
—=1ykx) =x

dx
W, = [dFF(7) = [ dx F.(x,y) + [ AyFy xy)

1 1
=f dxe(x,x)+f dx E,(x, x)
0 0

1 1
= -[ dx(F(x, x) + E,(x,x)) = f dx(2x? + x? + ax?)
0 0
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+a 1

1 3
f dx(3 + a)x? =
° q
C3

Wip:x=00<y<1ldx=0
1

1
[[arBon=[ao=0
0 0

Wip:0<x<1ly=1dy=0

1 1 1
fdxe(x,1)=fdx2x=x2 =1
0 0

0
W3:1

W, =1+2
1= 2
W, =1+2
2 3
W3:1

Work done depends on the path that is taken

Ifa: O:Wl =W2 = W3
F(x,y) = 2xy,x*)

F=-V¢p=-——,——
¢ ( Sx’ 6y)
¢(x,y) = —x%y + constant

5¢

5. = 2w = —F (&)
8¢

5 = =By
¢ = potential

When

a # 0, ¢ does not exist!

Ex
y2 = %3
y—x7 = 2z
A= (,1)B = (2,2v2)
F(x,y) = (xy,x)
W= fdfF(f) = dt%* F(a@®)
What ics o(t)?
g(t):y=t3,x=1t?
y2 = 6
x3 =16
a(t) = (t%t°)
A=(11):t=1
B=(22V2):t=+2
dg )
i (2t,2t%)
F(a@®) = (t5,¢%)
x = t?
v =t%3

'« F = 2tt> + 3t2t2
= 2t% + 3t*
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vz
sz dt (2t° + 3t*) =2/
1

Stokes theorem (2D)

_ 0F, OF,
der=ﬂ- dxdy | ———
c A 6x &y

Sometimes LHS or RHS is easier to compute

0F, OF, _
— ——=0,then ngdr
6x Oy c

Vanishes for all closed contours C

Be derived from a potential ¢
6

E=——¢F =——

x 8x ¢ By Sy

Then

6F, 6F,

éx Oy

“5(-59) -5 (57)

C ox (Sy('b Sy \ 6x
52 52

=6x6y¢_5y5x¢=0

These vector fields are called conservative
Proof:
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D C
Y A Ny
=
A AX B
(XY)
Evaluate
)g Fdr

1. AB:y=Y,X<x<X+Ax

_ X+Ax
f Fdfzf dx F.(x,Y)
AB X

2. BC:x=X+AX, Y <y <Y+ Ay

_ Y+Ay
f Fdf=f dyE,(X + Ax,y)
BC Y
3. CD:X+Ax>x>X,y=Y+Ay

X

f Fdf=f dx F(
cD X+Ax
4. DAY +Ay>y>Y,x=X

fCDFdf = fy E,X,y)

Y+Ay

SO
fﬁifdf== J- ﬂé+—Jn §§+-J~ ﬂé+—j-§ﬁ
AB CB BC DA
Y+Ay

X+Ax
= f (F.(x,Y) — E.(x,Y + AY)) + f (F,(X + Ax,y) — E,(X,y))
X Y

Use Ax,Ay < 1, use

X+Ax
-f dx f(x) = f(X)Ax

= [Fx(;((, Y) - E(X,Y + Ay)]Ax + [E,(X + Ax, y) — F,(X,Y)]|Ay
Derivative
df(x) I flx+ Ax) — f(x)
1m

5 dx = Ax—0 5 Ax
= —-——FEMXY)AyAx + 5_Fy(X' Y)AxAy
x

Sy

_ 5 5 SE, OF

Fdf=(—F ——F)AxA = ([ dxd <—y——">
ilBCD 6x Y by ¥ y = 1J dxdy éx &y

AxAy = area
Proved for small square
General case- divide into many small squares
area = Y.area of squares
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Ex
F@) = (2xy, x? + axy)
W=f Fdr =1 forall pathsif a=0

AB
1) Closed contour

fA N ) = - L "4 F o)

2) Is F conservative?

F=0v¢g
¢(x,y) = —x%y + constant
3) Stokes

_ 0F, &F,

Fdr = f[ (=2 ——==)dxd
frar =1 (G2 -5 )ty
0F, OF,

E_@ =2x—2x=0
(a=0)

ofy OF _

éx Oy
Then

fﬁdf = 0VC

c

And

J Fdr
AB

Depends on begin-end point, not actual contour
NOTE: every vector field
F=-V¢

Is conservative

6F SF_5(5) 5(6)_0
Sx Y 8y * 6x\ 68y sy\ é6x"/)

Conservative Force Fields (2D)
F(7) is conservative:

6F, _OF,
Sy  Sx
o F(7)—Vo¢(r)
Or

8
F() = 5= ¢ ()

E,@) = —%d)(r‘)
o § F(r)dr=0

Follows from stoke's theorem

_ SE, 6F,
fF(f)df = J[ dxdy (6_;_@>

. j F(r)dr
AB
Depend only on begin and end points, not actual contour

f Fdir =0

C1+C2

f Fdr‘+f Fdir =0
C1 Cc2

j Fdf=j Fdr
Cc1 —C2

3D
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F(x,y,2) = (F(7), B, (7), E,(7))

Scalar potential
¢ =6y,

IfF(r) =—-V¢

5¢

E, = o

o¢

E, = _E

o¢

E, @

Then F is conservative
Cross product
Fis conservative © VX F =0
V=nabla operator
Vector

V—(é o) 6)
~ \6x' 8y’ 6z

V X F vector, curl of F;,curl F

VXF—(6F 5F 5F 5F5F SF)
S \sy'F 8z Y6z * Sx Pex Y Sy ”
V¢ (r) = vector

B (6¢ 8¢ 6(/))

~ \6x' 8y’ 6z

Gradient of ¢

Grad ¢
V * V= scalar

5?2 5?2 52
2% 2 .9
v 5x2 " Sy? oz
V2@ scalar

62 82 2

AR AR

V2F vector

= (V2E,, V2F,,V*F,)
V.Fscalar, divergence of F
div F
OF, JF, OF
éx Oy 6z

F.V=F 0 + K, 0 + E 0
U Xsx YSy %6z
F.V¢ scalar
F.VA vector

= (FVA,,FVA,, FVA,)

1
¢(7) = —5x*y?z* —2xy +3

F=-v¢
8¢
E, = —g—x = xy%z% + 2y
F, = —% = x%yz? + 2x
8¢
F, = —g = xzyzz
Conservative
VXF=0?

VXF = (2x%yz — 2x%yz — 2xy?z,2xy?z — 2xy*%z,2xyz* + 2 — 2xyz* — 2) = (0,0,0)
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F is conservative

Ex Vector field F follows from potential ¢(7) = 2

T
=./x%+y2+2z?

r
_ 8¢ 6¢p 6¢
F=-V¢p=—,—,—
¢ (6x Sy 62)
1 1 2, 024 2\
¢=—=2—=(x +y*+2°%)72
roox?2+y? 422
o) 1 3
g = E(x2 +y?+2z%)22x
X x
= — §=—r3
(x2 +y?% + z2)2
°¢_ Y
8y r3
5  z
sy  r3
F=-V¢
(X Yy z
(r3';§'r3)
rF=(xy,2)
Fol
==t
A F .
r=;=umtvector
r.r=1
_ 1
F=T—2T

Strength drops as riZ

Points in the radial direction
Newton gravity
Coulomb, EM
¢ is constant on spheres with fixed radius
F is perpendicular to the quipotential surface
General statement
F 1 surface of constant potential
¢() = ¢(r + 67)
or K1
¢ (T + 67) = () + 67. V(1) + 6(672)
flx+Ax) = f(x) + Axf'(x) + 8(Ax?)
67 = (6x,6y,82)

5¢ 5¢ 5¢
6x§ + 5y5 + 625
¢ +67) = p(r) + 6TV + -+

But
(7 +67) = ¢(7)
Since equipotential surface
= 6rVp =0=67F(F) =0
= 67 L F(7)
Stokes theorem (3D)

2D:
_ 0F, OF,
def=ﬂ‘ dxdy(—y——x>
c A ox by

o0k & = 3rd tof VXF
5x oy )" rd component of
=(VxF),
Normal vector of surface
7l

i is always L to surface, .71 = 1
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Surface is in xy-plane i = Z = (0,0,1)

(VXF),=(XF)*q
fidxdy = AdS = dS

fﬁdf:
C

[fdS*(VxF)

3D
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30 November 2011
09:35

Conservative Force Fields (2D)
F(7) is conservative:

8F, _OF,
Sy  ox
o F(7)—Vo¢(r)
Or

s
R = 5= ¢ ()

5
E,@) = —@dﬁ)
o § F(r)dr=0

Follows from stoke's theorem

_ 0F, OF
F(Pdr = [[ dxdy (2 -—=
§F@dr = ff dx y(dx Sy)
. j F(r)dr
AB
Depend only on begin and end points, not actual contour

3D
F(x,y,2) = (E.(P), B,(7), F,(7))
Scalar potential
o (F) =o(x,y,2)
IfF(r) =—-V¢
__99
E, = o
__99
E, = _E
__99
E, @

Then F is conservative
Cross product
Fis conservative © VX F =0
V=nabla operator
Vector

V_((S o) 6)
~ \6x' 8y’ 6z

V X F vector, curl of F;,curl F
VXF—(6F 5F 5F 5F6F 5F>
S \sy? 8z Y6z * Sx Pex Y Sy ”
V¢ (r) = vector
B (5¢ 5¢ 6¢>>
~\6x’' 8y’ 6z
Gradient of ¢
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Grad ¢
V x V= scalar

5° 5° 52

2: [—— _ -

6x? * 8y? * 622
V2o scalar

52 52 52
IR
V2F vector
~ =(VE,V?E,V’E)
V.Fscalar, divergence of F
div F
_O8F, 6F, JF,

T 6x Sy | &z

6 + F, g + F,
Xox Yoy %

F.qu scalar

F.VA vector

= (FVA,,FVA,,FVA,)

F.V=F il
0z

Ex
1
() = —Exzyzz2 —2xy+3

F=-V¢

E, = —Z—i) = xy%z% + 2y

E, = —(;—;l: = x%yz? + 2x

E, = —(;—(Zp = x%y?z
Conservative

VXF =0?
VXF = 2x%yz — 2x%yz — 2xy?z,2xy?z — 2xy?z,2xyz? + 2 — 2xyz? — 2) = (0,0,0)
F is conservative
Ex Vector field F follows from potential ¢ (7) = %

VX2 +y? + 22

r =
_ 6p 6¢p 8¢
=== (55, 5)
1 1 1
¢:—:—:(x2+y2+zz)2
r /x2+y2+22
o _1 , 2. 2y
- = 2
5x 2(x +y*+2z°) 22x
X X
(x? +y? + z2)2
op__Y
Sy r3
5  z
sy 13
F=-V¢
_(x Yy z
(r3';§'r3)
= (x,v,2)
Fol
==
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Strength drops as Tiz

Points in the radial direction
Newton gravity
Coulomb, EM
¢ is constant on spheres with fixed radius
F is perpendicular to the quipotential surface
General statement
F 1 surface of constant potential
¢(@) = ¢(7 + 67)
or <1
¢ + 67) = ¢p(F) + 67. Vo () + 0(672)
flx + Ax) = f(x) + Axf'(x) + 6(Ax?)
o6r = (6x,6y,6z2)

5p 8¢ 8¢
¢(T + 67) = p(7) + 67V + -+

But
(T + 67) = $(7)
Since equipotential surface
=6V =0=6rF(F) =0
= 67 L F(7)
Stokes theorem (3D)
2D:

Normal vector of surface

fl
i is always L to surface, 1.7 =

Eg. Surface is in xy-plane i = Z = (0,0,1)
~ A T X
Eg. Sphere: i = # = - = (;,%,;)
(VXF),=(XF)*7
Adxdy = AdS = dS
If surface is closed (sphere) then 7 points outwards
If surface is open, i.e. it has a boundary, then the direction of the normal vector follows from Right hand rule

N
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Surface is characterised by
Area
Normal vector
[f dS = [ AdsS
dS=2D integral
¢ Fdr = [[ dxdy(V x F),
7 =(0,0,1)
Dxdy=dS
(VxF),=A(VxF)
= [[dSA(VXF) = [[dS(VXF)

fﬁdfz
C
ffds‘*(wﬁ)
A

Ex HEMISPHERE
x2+y2+z2=a?
z>0
Boundary C
x2+y2=a%z=0
F(f) = (_J/»x» 0)
Verify Stokes theorem

1.fﬁdf
C

3D
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2T = 2T
jgcﬁ(f)dj’:_]; d¢j—;ﬁ(1’(¢)) =fo dpa? = 2ma?

dr _ .
d¢—]aco an

df_(dx dy dZ)
dp ~ \dp’'dp’d¢

= (—asin¢,acos¢,0)
F(7(¢)) = (—asin¢,acos ¢, 0)
dr _
—* F =a?sin® ¢ + a® cos? ¢ + 0 = a?

do

R . T
A=Ff=-=—
r a
_ (f Y E)
~ a'a’a
F = (_y; X, 0)
VX F = (8y F, = 6,F, 8,F, = 8cF,, 6., — 8,F,)

[[dS*VXF = [[dSAVXF
X =acos¢sinf
y =asingsinf

z=acosf
0<o¢p<?2m
s
0<6 <§
Upper hemisphere
R - T 2z 2a cos@
AVXF =—%(0,02) =—=——=2co0s0
a a a

Jacobian = r? sin@ = a? sin 6

Vs
E 2T
=f def a®sin6 2cos @
0 0
21 % 21 %
=a2f dd)f d925in9c059=a2f dqbf dé sin 26
0 0 0 0

T
1 2

= 2ma? [— —cos 29]
2 0
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1
= 2ma® (_§> (-1-1) = 2na?
Integrals of the type

Jf Fas
Flux of F through surface S
= [[ EdS
Electromagnetism
F =(0,0,x%+vy?)
Plane x=2
Flux=0 since F//plane F 1 fA
Plane z=2
Flux #0
F 1 plane
F//f
Ex
Surface is closed box with side length a
Vector field F = (x,y,z) = #
Consider each side separately
1. Front
x=a0<yz<a
il = (1,0,0)
Jf dSF = ff dSA*F
f dyf dzFE.(a,y,z)
f dy f dzx
2. Back
x=0,0<yz<a
A =(-10,0)
AF = —F,(0,v,2)
= —X =
x=0
3. Top

z=a,0<x,y<a
7 =(0,0,1)
AF = F,(x,y,a)

=a
a a
fdxj dya = a®
0 0

4. Bottom, z=0

A = (0,0,1)
AF = —F,(x,y,0)
~0

5. Leftside, y=0

7 =(0,—-1,0)

fiF = —F,(x,0,2z) =0
6. Rightside

y=a
A = (0,1,0)
fiF = F,(x,a,2)

a

\;

f dzFE,(x,a,z)

I
Q)
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Divergance Theorem

13 December 2011
11:04

(gauss theorem)

Consider a closed surface S in R3
3D interior volume V

S =46V

Consider a vector field F ()

JI F(®as = [[f v+ F(@av

Flux through surface = Volume integral of div F

Proof
Consider a small cube and compute both sides using Ax, Ay, Az < 1
We have already computed the flux (see notes)
Flux through left, bottom, back =0, follows from symmetry
Right, front, top: Flux=a3

(a* =+ a)
Area F
sides
=total flux 3a3
Div theorem
_ 6 1) o) B
V.F = ng +6_Fy + 5ZFZ F=7=(xy,2)
=14+41+1=3

ﬂf vfuv=3ﬂ. dv = 3a3
cube cube

Ex sphere, F(¥) =T
[[F.dS
dS = AdS

I =

=f'=

>

r
dS = a?sin 6 d¢pdb

a?sin@ = jacobian

_ _ 21 T =0
ffF.dS=j d(;bf df a’sinfa
0 0
s
= a32nf dé sin 6
= a32n[— cos O]F
= 4ma’

f_ﬂ- V.FdV,V.F =3

sphere

= ﬂf dV—3—a = 4ma3
sphere 3

[ (x* +y +2)dS
S= closed surface of sphere, radius 1
x2+yr+z2=r=1
Use Gauss' theorem!
[[ FaS = [[[ VFav
Find F such that [ FdS = [[ (x® + y + z)dS

dS—TldSTl— _( ;;)
FAa=x2+y+z

Ex
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FE+E2+E>Z =x2+y+
T T YT
Fx+Ey+FEz=x*+y+z
F,=x
ﬁ
F=F=1
F(r) =(x11)
Now RHS
_ )
VE=—x+—1+—1=

X
= 4
[ wra=(] a=t
sphere sphere 3

Recap of integral theorems
Ordinary integration

1= [ ax .00 = 201
g(x)= primative

b
=g@| =gb)~g@
-end points
"surface terms" boundary
Conservative vector field F ()
©VXF=0
o F=-V¢
¢isa potential

=bedr— fdrV¢

= —(¢(B) — ¢(4))

"surface term" boundaries

Work done= difference in potential energy

Stokes' theorem

-U e ——F)dxdy = iﬁ(?)d?

J~(V><F)dS %Fdf

A= area, C=boundary "surface term", V X F="derivative"
Divergence theorem

vav.ﬁdv=ﬂsﬁd§

Boundary
S=6V

REVISION CLASS Fri 13/1 Glyn E
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14 December 2011
11:05

1) fa w)F(f).dr—
F() = (—xy,x?)
a(¢) = (cos ¢, sin¢)
0<¢<g

X =cos¢
y =sin¢g

f F(F)dF = f dqb F(a(¢))
1. d¢ = (—sin¢,cos ¢)
x = 0x(p) = cos¢p
y =0y(¢) =sin¢g
2. F(6(¢)) = (—cos¢sing,cos® ¢)

d—F = cps?p + c?¢p
3. i
cp(s?pcip)=c¢p

T b3
2 2
4. f dpce =s¢>|0 =
~ 0
2) A@) = (xyz? + x%,y + xz,2%)
1. A.Ascalar
= A% + A% + A7
2. VVA=divA
V= nabla

_(6 6 8)
~ \6x’ 8y’ 6z
- 6 8 8
VA= A+ A A,
=yz® +2x +1+2z
3. V(V.A) graddiv A
VA=¢
Vo vector

( b5 ¢> ¢>)
= = (2,22, 2yz+2)
4. V?A vector
V2=V %V scalar
52 62 82
AT
= (V24,,V?A,,V?A,)
=(2+0+2xy,0+0+0,0+0+2)

V(V.A) =w
Vjlel =w
ViA=w

VLVLA] = W]

5. VxA=
(6,4, — 6,4,,8,A, — 6,4, 6,4, — 6,A,)
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6. V¥VXxA=V=*B
Scalar
=—-14+2xz+1—-2xz
=0
Not surprise

axb=c

abxc=caxb=>b.cxa
Cyclic

aaxb=baxa

axb=c¢la

ac=0

A VA=H
_ 8 ) )
AxV= AX§+A},§+AZ£
+ AV. A

V.A=divA

A+ V= H = (AVA,, AVA, AVA,)
3) F(M) = (3x*y*z2x°yz,x°y?)
do
— = (1,2¢,3t?)

dt
F(a@®)
x=t
y =t?
z=1t3
1. Conservative
VX F =(0,0,0)
2. ¢ scalar,?2 function
F=-V¢

F, =—£¢=x2y22(1)
x Sx

E, = 0 = 2x3yz (2)
y = 5y¢_ xX°yz

F=——¢=x%(@3)
z 8z

0

(D) g = —3x2y?z
o)

(2)£ = —2x3yz
66 _ 3.,

(3)§— x°y

¢(X»Y'Z) = _x3y2Z+f(y'Z)
¢(x;y;Z) = —x3yzz+g(x,z)
¢(X,y,Z) = —xBYZZ + h(x,}’)
d(x,y,2z) =x3y?z+c

3. F(F)dr

L PO
0<t<1
a(t) = (t,t%,t3)
T do _, _
fodt dt.F(G(t))
F(a@®)) = (3t%,2t8,¢t7)
do

— . F =3t% 4+ 4t° + 3t° = 10¢°
dt
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1 1
f dt 10t° =¢t10| =1
0

0
4) G(T) = (x%y,xy)
1. y=x(0,0) - (1,1)
a(t) = (t,t)
0<t<1
[drG(F) =
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Hamiltonian systems

04 October 2011
13:02

1. Phasespacel’
2. Hamiltonian H:T —» R

. 6H
q= g
3. Equations of motion {
p=
4. Boundary conditions { ) B CIo
(0) =po
Example 2: harmonic oscillator
- Lagrangian
1 1
S 2.2
L= 2m q me q
£ 0= 8 L d (6L)
(0T T g T de\sg
= —mw?q — m{
i = —wq
- Newtonian mechanics
F =ma
F=—kq
mg = —kq
=4 =-w’q
k
w?=—
m
- Hamiltonian case
H= i102 + lmwzq2
2m 2
(total energy!)
L 6H D
e.om.: q= 5 m
. 6H )
=T mw*q

Time derivative of first

§="=-wq
m
Legendre transform
Formal technique, allowing to reformulate problems in equivalent ways

Def: start from lagrangian eg L = lqu —-V(g) L(q,q)

Define momentum p = g: =mq
DefineH =gp — L

— 1 2 +V( )

= Zmp q
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Thermodynamics

06 October 2011
13:22

Thermodynamic system: any macroscopic system
Thermodynamic parameters : V,T,P,N,... things that can be measured w/o disrupting system
Thermodynamic state: specify parameters
Thermodynamic equilibrium: no time dependence
Equation of state: functional relation among parameters
Thermodynamic transformation: change of state
Quasi-static: intermediate steps equilibrium
Reversible: quasi static, goes through same steps on way back
Work W: from mechanics

Heat Q: thing exchanged when temperature changes without producing work
Heat capacity: C = i—g
Heat reservoir: very big system, such that C — oo
Ideal gas: limiting case of a diluted gas
N identical particles
Point-like particles
Interactions short range
State function
Any function which depends on the state occupied by the system (parameters) but not on the
history of the system

1. U(internal energy), S(entropy) are state functions

2. jduzozfds
14 4

Where y is a closed path in the space of parameters
3. dU and dS are exact differentials (it is NOT true for W, Q)
4. U, S defined (classically) up to a constant

Thermodynamic potential
Helmoltz free energy
F=U-TS

Gibbs free energy
G=F+PV

Hentalpy

H=U+PV

Digression: differentiating functions of many variables
12 October 2011
09:07
fiR™ > R
Differential
Sf Sf

df = (8—%) dx, + (6_x2> dx, + -
Partial derivatives
Sf
Sxi
flxg +x,+ -+ x)
"vector"

Sf of
<5x1 "Sxy’ )
Second differential is m*m matrix
[t is a symmetric matrix
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52f  82f
6xl-6xj B 6xj6xi

7 1st law thermodynamics
The quantity|dU =6Q — 6W| (conventional!)
[s an exact differential and it defines the state function U (internal energy)

- 2nd law thermodynamics
The quantity

_%e

[s exact diff. for reversible infinitesimal transformations and defines a state function S (entropy)
Also: the entropy of a thermally isolated system is non-decreasing (clausius theorem)

3rd law thermodynamics

The entropy S at T — 0 is universal (=does not depend on the system) and can be chosen to

vanish
S(T-0)=0

Exercise: internal energy of ideal gas
1. dUand dS exact
2. Eq.of'state PV = NkT

Show that U = U(t)

Depends only on T

U—3NkT
T2

Proof:
1stlaw: 6Q = dU + W
oW =PdVv
2nd law: 6Q =T ds

50=20,9 v ipa
Q=573 v

Assuming that U=U(V,T)
ds = 1(5_U) dT +1(6—U+ P) dv
- T\6T T\6V

6 16U 6 1/6U

SV IT 6T] T [T (51/ * P)]

From the fact that the matrix of second derivatives is symmetric
"who got lost?"
Most of class raises
hand
"very good"

ifu=UuW,T),
by definition
6U 6U

du = de +6_TdT
éS

1(5U)dT=>
T \S6T oT
1(5U+P dV:>5
T \8V )
0 [16U . 6 6
OV IT 8T oV 8T

1) [1(6U+P)]=> o) 65

ST IT \6V OoT 6V
1 &2 1 62 1 (6U ) 16

Tover? —Tertev T2\ev T T) T rsrt
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dU exact o y_L1
E = = —
eXact = sver . T T 8TV

16U P 16P

TTigy T2 T
PV = NkT

NkT
P=—ro

|4

6P & (NkT Nk
Tl v )T
8P _ NKT _
stV T
1 ou ép
~7z(~ =P+ T57)
1 6U 1
0=r(-gp=F+P)=0=5(
U
A
Maxwell Relations
Set1:dU = 6Q — W (1stlaw)
= TdS — PdV (2nd law)

T_(SU)
\8S/y

b (5U)
— \8S/g

It is natural to write U as a function U(S,V) of S,V
6 Q: infinitesimal amount of heat given to a system
SW infinitesimal amount of work done by a system
Set 2: Helmalts Free Energy
F=U-TS
Differentiate
dF =dU —d(TS)
=dU —SdT —TdS
=TdS — PdV — SdT — TdS
[dF = —PdV — SdT|
=>F=F(T,V)

s = (6F)
—\8T/y

b (5F)
- \&V/r

Set 3 Gibbs Free Energy
G=F+PV
dG = —SdT +VdP

G (66)
— \6T/p

[ (6P)T
Set 4 Enthalpy

H=G+TS
dH = TdS +VdP

T_(SH)
~\85/p

OH
V=(§)S
UGS, V) e F(T,V)

Ipv Ty
H(S,P) ©sr G(T,P)

T+0= 0
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Legendre Transform!
Analogous to

.4-b
L=1L(q,q)«—H=H(q,p)
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Classical Statistical Mechanics

13 October 2011
09:28

e We study systems
o Large number particles N
o Occupy volume V (assumed to be finite)
o Equilibrium!
e Basic Strategy
o Replace/generalize the method of "most likely distribution” by sets of counting exercises
and "ensemble averages"
e Input
o Phase-space I’
o Hamiltonian
o Density function
p(q,p)
= Counts number of microscopic states as a function of phase-space variables
o All physical quantities (macroscopiclevel) are computed as ensemble averages:

J-@*Nqd*Npp(qi,v)f (90 p))

J-d3Nqd3Npp(q;, p))
f = any function

[microcanonical ensemble]
Consider system isolated

<f> =

1. Nis fixed
2. E=Uis fixed
This defines p to be

S E<H<E+

0 otherwise
Where A infintesimal

Microcanonical Ensemble
Assume system isolated
{U =E Fixed
N Fixed
A small energy interval (A< E)
{1 if E<H<E+A
0 other(\)/vise

)= [ | d"adp
H<E
Volume of phase space with E>H

q =dq:dqzdq; - dqs,
aE) = [ ¢ qd*pp(p.0)
r

Volume of phase space occupied by the ensemble
— JdSqu3np

r
E<H<E+A
=2(E+0) -X(E)

OYE

w(E) = SE = Q(E) = Aw(E)

AKE

d3N

[S(E,V,N) = kInQ(E)]
We identify S with entropy
In thermodynamics

6Q
ds = —
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1. Sis Estensive
(the S if a system is the sum of S for subsystems)

N:N1+N2
V:V1+V2
H=H, +H,

T CAREFUL! Assumes short-range interactions
S(E1, V1, Ny) = kInQ,(Ey)

S(E,, V,,Ny) = kInQ,(E,)

Q(E) = [ d*Vqd*p

E<H<E+A
E
A
= Z f d3N1Q1d3N1P1f asNzq,d*Nzp,  E = E, + E,
A= B <H <E;+A E,<H,<Ey+A
E

A
= D 0,(Bp) X 0, ~ By
0
E,, =mA
Notice: all terms in the sum are positive and finite.

m

CAPS LOCK IS CRUISE CONTROL FOR COOL!
3E such that _

QU (E)QQ(E — E) 2 Q1 (Ep)Qy(E — Ey)

vym

0, (B (€ — B) < 0(E) < £ 04 (E)aa(E — )

E
A= total number of terms

Take Logarithm
_ _ _ _ E
S,(E) + S,(E — E) < S(E) < S,(E) + S,(E) + k1n (Z)

Take N>>1
1. Eisestensive= FE < N
vol(6N dimensional space)~x°"

E
I < s )—r N
NS\, (B) + S,(E —E)) _ Noo 6N

= S(E) = S,(E) + S,(E — E)

AT LARGE N

1. Entropy S is estensive
2. Scanbe used to define temperature T
Proof: we already showed that there exists E such that
S(E) = S1(E) + S,(E — E)
0B = L (B0, (E-E)
E yields the maximum contribution
d(Q,(EQ,(Ez)) _=0
E,;=E
d(E; +E}) =0
Take log
_=0

d(InQ, (E1)Q,(E;)) _—

d(E1 + Ez) =0
dIn(In 9, (E;)Q,(E,))

511’191 511’192
== dE1

SE; + Z §E,
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6lnQ; d6InQ,

- (-2
0E; OE,

Multiply by k
6S; _ 65,
SE,lg,=E = 8E, \g,=5-E
Hence define
1 6§
T 6E

3. Equivalent definitions
S(E,V,N) =kIn}.(E)
S(E,V,N) =klnw(E)
"equivalent" means: different, but yields same thermodynamics when we take N — oo
S=klnQ

Example
p
E<H<E+A
Vol=Q
/——’
q
Vol=}
4. 2nd Law
"S is a non-decreasing function"
Proof
S=S(E,N,V)
But E,N fixed
Only V can change

V can only grow

Y = f d3qu3Np
H<E
If V grows, the phase-space is growing

X grows = S grows
5. 1stLaw
Proof
S=S(E,N,V)
Keep N fixed and differentiate

dS—dE5S+dV65
- T SE sV
Use defof T

“laprar®
T sV
&S

dE = Tds — (T—) av
= s 57
Define

p=7>
— v

[dE =T dS — P dV]

PH-203 Page 116



Recap

Define
S=kln
S has following propeties

1. Estensive
2. Defines T (equilibrium)
3. Equivalent definitions
4. 2ndlaw
5. 1stlaw
General Prescription
1. Compute X (or Q, )
2. Derive S =kInX
And take N — oo (very large)
3. Invertrelation

S(E) - E(S)
4. Reconstruct thermodynamics

_oU
58S
_ou
8V

F=U-TS

c 6U
VsT

\\\\\

SD—l quz — RZ

i=1

D
21?2

r,; ()

n2zRP

Iy (1 +%)

[’z is euler gamma function
def

Iy (2) =f dt t? le™t
0

properties
xle(x) =T(1 + x)
[;F(1+m)=m! meN

vol(SP~1) =

vol (BP) =

1
T (3) = V7
Examples
D=2
15 = 2 _ o
V0 O T
D=3
vol(S') =
Ideal gas
Def

N (large!) identical, classical, free, point like particles of mass m in volume V
Phase space
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I'={(qup;}i,j=1..3N,p;, q; € R}
Hamiltonian

1 3N
H=— 2
ZmZp‘

i-1

Exercise: use its canonical ensemble to

1. Comute
5(5) = [ a*aap
r
H<E
— deNq d3Np
H<E
—yN d3Np
H<E
V= f d3Nq

H = 12 2<E
~om . bi
L

3N
Z p? < 2mE
i=1

The integration is restricted to a 3N dimensional ball B3" in momentum space
With a radius

R =+vV2mE

Hence

ﬂ 3N
Z(E) — VN&
3

Iy (1 +7N)

3N
_ (anE Vé) 2

(7)!

(N even!)
2. S=klnX
3N

(anE V%T
3N
(5)!
Take N— large

Stirling approximation
Inm!~mlnm—-m

(2nmEV%)
=—=Nkln

2 3 3 3
7NK11’17N +7NK

=kKkln

=Ine

—3Nl 3me —EV§

2 Kn[Tme_ ]
Define

_ A4me

=—M
Ho 3

2
3 EV3
S = ENKln<HON )

3. InvertS(E) - E(S)

2
2S (MOEV§>
—=1n
3Nk N
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HOEV3

o [m

pex p[ 7
HoV 3 3Nk
4. Thermodynamics
OE

S
Maxwell relation

2 E E 3N T
= — = _—
3N« 2
c OE 3N
= = —— = —
v=er 2
_ O0E
sV
Maxwell relation
(—§)1
_ 2 ZE
( NKT)
p NxT
v

2. Gibbs paradox
Ideal gas (example)
2

3 uoEv3
S ==Nkl
2 TN
From explicit caclulation
3
E = -NkT
2

3 2
S = ENk IncTV3

Compute difference in entropy
AS = S - Sl - 52

3 3 2y 3 2
= >Nk in(ervs) - ~Nikln (ervi) - S Nakln (crv?)

v v
AS = k(Nlln + N, In )

V
V> ULU,

=[A5 > 0]

Compare to

1[blue]  2[yellow]

Same T,P, suppose the 2 gasses have different "colour”
Solution to the paradox
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New rule:

Any time there are N indistinguishable particles, add a factor of 1/N!
1

_ 3N, J3N
£ = v | dMadp

Snew = Sold —kInN!
N>>1
= SOld —kNInN

3 2
=5NklncTV§—kN1nN
2
3 V\3
s=—Nk1nCT(—)

2 N
2 2 2
AS = k(N k (Vf N1 (V1)§ N, 1 (V2)§
= k(Nkn (g 1M\, 2N,
=0
B V. Vi W
ecause o = N, "N,
In the case of different gases
1 1
P p— d3N d3N
P3N NNy 1 3
1 11
—#F——|A 0
N! * N;!N,!
Still true for different gases
3. Third Law?
2
S= 3Nkl CT(V>§
2 N
When T — 0 problem
Keep ¢, V, N constant
lim S - —oo
T-0
Exercise: paramagnet
1. N particles
2. E energy (fixed)
3. T ={{o}},0; = £1}
N
4. H=—uhy Z o;
i=1
hy; =magnetic field
Compute entropy
T
_Emax E
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Exercise: 2 state system (model of paramagnet)
Using microcanonical ensemble (in gm)
Microscopic description

1. N particles (fixed)

2. E energy (fixed)

3. I'= {{O-i}'.l)v,o-i = il}

le requires ?
4. H= _ﬂpmzﬁvzlo-i

No kinetic or potential term in H

Macroscopic description

N
# occurrences of '+'

N_
#occurrences of '-'

This is a QM system!
Discrete set of states
1 REPLACE

=55 d3Nqd3Np —— Q: # microstates ({+ - 1})
H<E

Satisfying macroscopic constraints counting!

Two constraints: E,N fixed
{E = —uP,(Ny —N_)

_E
€= LuP.N

N
NiE§(1+E)
—1<e<+1

N
a=(y,)

! N!

“NJ(N—N,)! N,IN_

N, and N_
known. You want to know how many different sequences {+ — + + ... +} contain exactly
N_ —
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Start with one such sequence
{+,4+ b= = =, s =}
All others obtaineed by changing order
= factor of N!
BUT: overcounting! Exchanging identical symbols yields same sequence
N!

=>0=
N,IN_! N,IN_!

= factors of

Stirling approximation
InN!~NInN — N
=k(NInN—-N-N,InN;, + N, —=N_InN_+N_)
=k(NInN—-N,InN, —N_InN_)
N N N N

= k(NlogN—z(l —e)ln[z(l —6)] —5(1 +€)ln [E(l +6)D
(1-¢) N

2
1+e)

2

N N
=k{NlnN—E(1+6)lnN—E(1+6)ln
(1-¢)

2

N N
=k{—3(1+e)ln ——E(1+e)ln

B kNl (1—6)1_6(1+6>1+6 _
R T 2 =

Compute T

1 _ 0S

T 6F

B <5E)"1 5S

~ \Se OE
1 1)

=mxg[—N7k((1—e)ln(l—e)+(1+e)1n(1+e)—21n2)]

k
= =g (CPA=9 =14 B+ 1)

1 k 1—¢€
:—=—ln( )
T 2uP, \l1+e€

Plot T(€),S(€)

.

1. € > 0 = problem, T<0 imphyiscal (though maths correct)
We did not take into account the possibility that particles MOVE
H should contain kinetic and potential terms
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€ MUST be negative
2. With this Caviat fixed
S(T) becomes monotonic
3. Third law of thermodynamics is reproduced
When
|
N, >N
There is only 1 state
{4+, ..., + +}
In1=0
This is useful because quantized(=discrete) states

Classical system
Phase-space:

M= {{Poic-@mjhm =1,...N, k,j = 1,2,3}

P 3N matrix
qmj 3N coordinates

N
H = ZHL
i=1

3 3
1 1
Hi= g ) P+ gma” ), dh
k=1 k=1

3N harmonic oscillators

Approximate model of a solid:
Osc around equilibrium positions (if SMALL) are well approximated by harmonic oscillator

1
Z(E) = hﬁ dqud3Np
H<E

1. No 1/N!because particles can be distinguished by their "lattice" position
2. You could compute Q(E)

1
Z(E) = W dqudBNp
H<E

1% 1 °
ﬁz Piz + Emwz Z qlz
i=1 =1
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Do a change of variable in the integration!
Define 6N variables x;

1
——P, wheni=1,..,3N
V2m !

mw? ]
Tqi_w wheni=3N+1,..,3N

Xi =

A pOint inTis {pll P2,P3,,91,92,93, }
P1, D2, P35 o = X, oo, X3N
qll CIz, q3, e — x3N+1’ ""x6N

The contraint reads
6N

foSE

i=1
6N dimensional ball with radius R = VE

1
Z(E) = hﬁ-f d3qu3Np
H<E

3N
1 3N 2
=—|  aVx(v2
n3N sx2sp x( m) w2
3N
3N 2
(v2m) —| = jacobian

dp; = dx;Vv2m
2 3N
= (=) wol(B* (R = VE))

( 2 )3N H%RGN

(1)

(2nE)3N 1
= *
hw (3N)!
6N — 2
(i.e. suppose you have only one harmonic oscillator)

=[]

1 1
— 24 202 <
H 2mp +2ma) q- <E
Ellipse
B
V2m
/ vol x ¥
g

2E
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Change variable

Q) thickness A

X2

VE
/ \/E x1
VE

JE
mw?
XeN = 2 qsn
mw?
dxey = 2 dqsy

’ 2
dqsy = deew

dp3N = Vzmdx6N?
(27TE>3N 1
=— * —
hw (3N)!
Compote S (for large N)
Write all equations/definitions beforehand- helpful

S=kinX(E)

. (2nE>3N 1
= *

"\ he (3N)!
Stirling

In3N!~3NIn3N — 3N

2wE
= 3NkIn (—) —k(BNIn3N — 3N)
hw

2wE
= 3Nk [1 +1In (—)] =5
hw

. 3Nhw [ S ]
~ 2me P3Nk

OF E

Cy, = E_ 3Nk

VST
Equipartitions in H there are
3N q;,and 3N p;
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Entering quadratically
1
Cy = (3N + 3N)§k = 3Nk
In S, replace E=3NKT
S =3Nk(1+1 (kT)
B ( n hw

4. Violations of equipartition theorem
Example: Solid
C, = 3NK
Dulong-petit law

c
Mk

Solution involves QM
Example 2: Diatomic gas

rrTTTTTYTTY

No classical explanation (QM needed)
One can at best produce classical models th
1
1) H= mzipl?
P:c.m.momentum

PH

at work well over ranges of T

-203 Page 126



2) RotationD.O.F.

1 2 1 2
H =ﬁZiPi +§Ziei
[: momentum of inertia

e: angular momentum
Equipartition

k

CV=N><5><(3+2)

2 Nk

2
1 2, 1 2, 1 1 5 2

3) H=o il + o e + ﬂzipi + S Hw %Ry = Ro)

u: reduced mass
R;:distance between atoms

(R, average)
p;:momentum conjugate to R;
Equipartition

1
Cy=5Nk@B+2+1+1)

—7Nk
2

Concept of energy threshold (QM) in order to connect 1-2-3

Microcanonical ensemble (classical)
Good

1) 1st, 2ndlaw

2) EQ state computed

3) Atordinary T, Equipartition theorem works
Bad

1) Whatish?

2) % boltzmann factor?

3) Third law?

4) Exp. Violations of equipartition
Ugly

1) Calculations are hard!

2) N, E fixed Unphysical!

CANONICAL ENSEMBLE
Addresses 2) ugly feature and makes calculations more accessible!
Partition Function

Classical canonical ensemble

Assumptions
1. Physical systems of interest are in contact (equilibrium) with a heat reservoir at temperature T
2. N fixed

NO REFERENCE TO E

Density function

1
p=(qp) = e @)
= ¢ BH(D.9)
B 1
ﬂ_kT
Partition function

— 3N, 43N, —BH
= 73N -fr d3Nqd3Npe=F
[' « integral over whole phase-space

1

h3NN!
Define Helmoltz free energy as

Zn

= same as microcanonical
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ZN = e_ﬁF(V'T)

Show that
1. Fis extensive
2. F satisfies
Derivation:
System N,E
Reservoir N', E'
E'>E
N' >N

Er =E+E'

Ny =N+N'

USE Microcanonical

Q(ET) — j d3qu3di3qud3Npl
Ep<H<Er+2A

Assume particles distinguishable and h=1

d3Nqd3Np = coordinates and momentua of system

3N .
d3Nqg'®p' =" of resevoir

— Zf d3qu3NpJ. d3Nq/d3Npr
T JE<H<E+A E'<H<E'+A

— Zf dSqu3NpQ/(E1)
E E<H<E+A

E E<H<E+A

We know that
S’(ET — H) = kan’(ET — H)
Taylor expand

oln Q' (E
=kInQ'(E;) _kn—(T)H+...

5E;
5S’
= S’(ET) — 6TH
T
1
= §'(Ep) 7 H

1
Q' (Er — H) = exp [ES,]
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- exp[XE exp |- 1
k kT

[S(E H
Q(E7) = exp (kT)]Zf a*Nqa3Npe kT
= JE<H<E+A

S(E;)] H
= exp (Er) fd3qu3Np e kT
k1)

S(E7) . . ,
exp " = constand that is not interesting for our system
Essentive:

Proof:
Take h=1
N = N]_ + N2
Same temperature T
1 1
__— = | 43N, 43N, ,—BH
Iv= NN ) 4 adTPe
H = H1 + H2

As long as the interactions are short ranged, H=H_1+H_2
fd3Nq1d3Np1d3Nq2d3Np2 e—ﬁHle—BHz

T NN,

1 3N, 3N —BH 1 3N 3N —BH
=N_1,dCI1dP1e 1XN_2,dCI2dP2€ z
=ZN1ZN2
F=—-kTInZy
= —lenZleNz
= —lenZN1 —lenZN2
= F1 +F2
Provethat F =U —TS
We defined
-Bf — 3N, 13N, ,—BH
e ﬁf=h3NN!fd qd3NpeF
Rewrite as

1

— e dequSNpe—ﬁ(H—F)

Take derivative in respect to
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0=

h3NN'fd3qu3Npe—B(H F) (—ﬁ(H _ F))

h3NN'fd3qu3Np e BUH=-F) x [F H+pB ﬂ]

Internal energy can (must) be defined be ensemble average
E=U=<H>

3N, 43N
Y I (g T

h3NN!
Remember
:fdmpr

[d..p

<p>
Rewrite

0—<F+B !

53) R3N NI

OF
N 13N, ,—B(H—F
ﬁ)xh“’N!J‘d?’ qd3Npe BH-F) _

fd3qu3Np e~ BH-F) _ fd3qu3Npe—ﬁ(H—F)

VN
= (F +p

-1
#5=br)

_1( 1)‘18F
T kT\ kT2) &T
o)

_ F
ST
0=F-U- TSF
- 5T
Maxwell

_ OF
ST
=2>|F=U-TS
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Canonical ensemble
23 November 2011

09:10
Prescription
1. Compute
— 3N, 43N, ,—fH
ZN_h3N!J;d gd>"pe
N! = indistinguishable particles
1
P =i
2. Compute Free energy
F=—kTInZy
3. Maxwell relations
G OF
oT
_ 6F
8V

4. Thermodynamics

Exercise N.1: monoatomic ideal gas

3N

H= ! ZPZ
T 2m ¢

i=1
N particles
V volume

%) 5 T
f dxe ™ = |—
—o0 14

Set h=1 for simplicity

1
ZN N'Jd3Nq d3Np€ BH

1
N

1 B
= ﬁ* VN f dple Zmp1 *f dpze Zmp2 *f dpse 2mp3

_iz.p.z
d‘hd‘h .dqsndp,dp, ...dpsy e 2m"ti

3N

U dpe” kaTp] =m(\/2nka)
3N 3N
VNTZ2 C2
T

C=arbitrary constant

F=—kTInZy
3N
3 VN(cT)2
= —lenT
Vv 3
= —NkT In [NCTZ]
oF 1 NkT
P=-=,= —(—NkT)V=7=>
S = oF = Nkl (V T%) +NkT(3 1)
=TT VT 2T
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—F+3Nk

T2

E=U=F+TS

—F+T( F+3Nk)

N T 2

F F+3NkT U 3NkT C ou 3Nk

= - — = = - = = —=—=
2 2 VST 2

1. Aslongas N large, Microcanonical and canonical ensembles yield same thermodynamics
2. Be precise at early stages

Exercise N.2 Diatomic ideal gas
(Room T)

H= Z—PZ —12

Where phase-space is
r={{Q.P,0,p:li}i=1..N}

i, ¢; » (h = 1) decribing rotation,not dfd¢
l; only two ways of rotation

77
1
Zy = N'fd:"NQ a3V pdN cos @ dV¢p d?N1 e=FH
— iVN(‘l'T[)N
~N!
41 = angles
Why 2N

L
N particles [ vector (lz)
l3
But diatomic-- 2 meaningful components, so 2N

1
Zy = VN (4m)V f dAP,dP, ... dP;ydlydl, ... dLyy exp ﬁ[Z—PZ zﬂzfl
i

=—VN(47T)NUdPe 2mkT ] Udle KT ]

- —vN(47T)N(2nka) > 2nikT) 2

VN (cT) 2

NT TN
F=—kTInZy

NeTyz
V*(cT) 2
InN!'=NInN—-N

5 5
VN (cT)2 VN (cT)2
= —NkTIn N — N = —NkTIn N

P=—3 =i =[PV =NiT]
6F F 1

s =55 = "7+ M (57)
5

C, =5 Nk
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QM Canonical ensemble

24 November 2011
09:07

Pragmatic approach
Classical
Phase-space I’
QM
e Discrete energy levels
€}, occupation number 77,
Sequence of {M;}replacesT
o F= Ekmkék
Sum of levels

< 0@ = Vg dp Q) = Y W(iML)
T(E<H<E+A) o)
W: number of different ways to realize /write same state
Example: 2 state system
N,,N_

W =(,)

Harmonic oscillator (QM)

1 1

H = PZ - 22
om + Zma) Q
Eigenstates

& = (i + ) ha
k € N,
(no degeneracies)
Exercise: compute canonical ensemble for system of 3N oscillators which are decoupled and
have all same w
(Einstein solid)
Compute partition function

Zy= ) exp(~Bém)* ) exp(—fém,) s > exp(—féw)
m1=0 m2=0 m3N=0
Because w is same, AND decoupled oscillators
S 3N
1
= z exp (—B (m + E) hw)]
L(m=0

Because no degeneracies summation can be done explicitly

= exp ] [Z exp(— Bmhw)]

= [exo (- @)] [1+ exp(~Bhw) + (exp(~ha))? + - ]

Bhw > 0 = exp(—fhw) <1
Geometric series

- :exp( ‘Bhw)] [1—exp[ ,Bhw]]
e

exp (~232) (e (552) - e (- 55)

1 3N

[ m—i)

3N
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1 3N
= |l = Z
v

Free energy

F=—kTInZy
., (Bhw
= 3NkT In [2 sinh (T)]
. oF
8T

-9 (31va1 [z i h(hw>]>
T i R VY2

hw 1 hw hw
= —3NkIn [2 sinh (—)] — 3NKT —————2 cosh—*( )

2kT > sinp 12 2kT \ kT2
KT
= —3NkI [2 i h(hw>]+3th th(hw)
- DSk T2 O ket

kT
Sciassicat = 3Nk [1 +In %]

From classical calculation

Take several limits and compare

hw
T >0 x=——-0

. 2kT
cothx~; forx -0

sinhx ~x forx — 0

hw 3 Nhw2kT
SQM SlargeT —3Nk lnﬁ+ETE
hw 3Nk

= —3Nk lnﬁ + T
kT

— 3Nk [ln— + 1]
hw

What aboutT — 0

Then x — o
cothx » 1
A

. e*
sinhx —» 5

hw
exp [m] 3 Nhw
Som Fsmaur —3NkIn|2x—= o

— _3Nk hw +3th
- 2kT 2 T
3NAaw 3Nhw _

2T Y27 T
THIRD LAW!
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30 November 2011
09:10

Internal energy

F 3Nhw hw
S=—=+ mmz

T 2t kT
Compute
U=E=F+TS
—F+T( F+3th thhw)
- T 2t okt
_3nn th(hw>
— WOl T
ForT —» o
d Il
—_—
2T 571"‘1
cothx~; x K1
th hw 2kT
= _—
COMNT ™~ e
U = > Niw coth 22
T et
3 2kT
Tzlargezth%=3NkT

This agrees with classical calculation and equipartition theorem
WhenT - 0

cothx - 1 whenx — o
Hence

3
U =t_sman Eth x (1)

= 3 Nh

= E w
Remember

1
k=01.2,..

, _how
€p = 2

Atverylow T

Atvery low T, virtually all the oscillators are in the ground state!
Also
U {3Nk (T > )
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kT /e
ho N
C, = 3Nk | —2KL__
; hh_“)
Sin kT

Good: QM calculation explains the fact that equipartition does not hold at low T

In a real solid, the interactions (i.e. potential) cannot be reduced to 3N copies of oscillator, All
with same frequency w! Many different values of w to be used. (interaction between all
particles)

In practice: our H is too simple to fit the data

PH-203 Page 136



Grand Canonical ensemble
30 November 2011

09:31
Remember that:
Density function p chosen on the basis of a set of constraints which define ensemble
Microcanonical Canonical
-
E,N fixed T,N Fixed
U U

_{LE<H<E+a R

0 otherwise
What does e "#H mean?

e Atfixed T (fB) states with lower energy are more important
e Atlower T, the difference in the weight is very large
[: parameter encodes thermal ("disorder") fluctuations
H: classical dynamics
However: Keeping N fixed is unrealistic!
Grand Canonical
Constraints are (T, p) are fixed
1 =chemical potential
Replaces the role of N in the construction
In general, we expect
F=F(T,V,N)

_ (5F)
H=6N)y oy

Example
N,

H,
N, + 3H; — 2NH,

Generalize thermodynamic potentials
dF = —=SdT —PdV + udN
dU=TdS—PdV +udN

Grand Canonical Ensemble
N allowed to vary

Define density function
N

z
p(N,q,p) = rhg,\,exp[—ﬁpv — pH]

N=discrete parameter

p,q=for each choice of there are 3N g; and 3N p;

P=pressure
Fugacity
z=ebPH
1
kT

u= chemical potential
Define Grand Partition Function

Z= z N7y,
N=0

Zy =partition function
Equation of state

All other interesting thermodynamic quantities compute via ensemble averages
Derivation
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2 systems
N, KN, =N-N;
VNLV,=V-1
Systems at equilibrium with each other
Same T
But in general, we allow them to exchange particles
Partition function of (1)+(2) (two systems)
(seth=1)

d3qu3Np
ZN =I(T>€_BH

Assume that H = H, + H,
(no interaction terms between 1 and 2)

N 3N 3N 3N 3N
_ NI f(d q,d*Np a3V q,d p2>e—ﬁ(H1+H2)
= N, N! N!

d3N

qd*Np

= dq,dq,dqs ... dqay, dqsy 1 - Aq3y X dp1dpadps ... dpsy, dPsy+1 - AP3n

OMNE WO

dq,dq,dqs ...dqsy, and dp,dp,dps ...dpsy, correspond to 1, others
correspond to two

N 3N 3N 3N 3N
= ) [ e [ e
1! 2!

N,=N-N,

d3N1q d3N1p1
z f—l _BHIZN N4 _ZN

Z

FN = kT anN
3N 3N
1= 2 fd 1Q1d' p1 o—BH1 p=B(Fn,~FN)
N;1=0 .

Taylor expand for small N; = N — N,
Fy, — Fy = F(V =V, T,N = Ny) — F(V,T,N)

oF (AV) + oF (AN)
T8V SN

= (=P)(=V1) + u(=N,)
Fy, — Fy = PVy — N,

PH-203 Page 138



N 3N 3N
1= Z fwe—ﬁm o—B(PVI—uNy)
N, !

P has no index because systems are in mechanical equilibrium
(same pressure)

e B(PVi=uN1) qoes not depend on (g4, p;)
N

= z e_B(PVI_ﬂNl)ZNl

N1=0
Now take N — oo and drop the "1"

1= Z e PPVebuNz,

N=0
e PPV =no N dependence

oo

— o—BPV Z 2Nz,

N=0
ZNZN =7
(grand partition function)
— e—ﬁPVZ

PV_
=
kr "

Average number of particles:
Def. ensemble average
_ XnzVZyN
- 2nzNZy
Because Z,, does not depend on z,

<N >

<N >

1)
<N>=z—1InZ(zV,T)
0z

Internal energy

U=E=<H>
_ %z
_6Bn
Proof
0 1nz= 512Nz
5B " 5B " N

= —%lnz zN |

B <z fd?w qd3Vp _ﬁH>)/(§N:ZNfd3N?VC!l3NP

Monoatomic ideal gas

H = ZPZ
" 2mA ‘

L
We already know that
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N
_ (CVT%)

NN
Also, let us compute
(o)

Z = Z ZNZN
N=0

_ i (CZVT%)N

N!
N=0
3
= exp[czVTZ]
Equation of state
il =InZ = VT%
T - ImZ=cz
Compute <N>
6
<N> =z—InZ
6z
6 3
=z— czVTZ)
6z ;
=czvT2 =InZ
Go back to E.O. state
ild =InZ =<N >
kT T
= [PV =< N > kT|
Internal energy
6
U=<H> =-——InZ
56
5B\ 68
~(57) s
(=) 2 Cearr
~\kr) T
3 1
= EkT TczVT?2
3 3
= EkT(czVTi)

3
=§<N>kT=U

Quantum Gas Distributions
Grand canonical treatment
Basic QM principles
1) Energy levels of many systems are discrete
e.g.
Particle in a box 1-D
h?m?
Sp =
8mlL
Harmonic oscillator

" 1
Em=hw<m+§>

2) Because identical particles are not distinguishable then
If 1- particle states are
P (1)
Y2 (x1)
The 2-particle state is (VN EDINESD)

How to build 2-particle states?
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08 December 2011
09:23

In nature, there exist two kinds of particles: Bosons, Fermions
e Bosons:
The state of N-particles is symmetric under exchange of any two particles
Example: Y (xy, x2) = 11 (x1)

ASNNN

e Fermions:

Example 1 (x1, x2) = 1 (x2)92 (x2) — 11 (x2)1h2(x1)
Fermions obey pauli exclusion principle: two identical fermions cannot occupy the
same state
Proof
"same state" means that the function
P1(x) =P (x) = P (x)
Y(xq,x2) = p(x)P(xz) — p(x2)p(x1) =0
Spin statistics theorem fermions have half-integer spin, while bosons have integer spin
Fermions: electrons, quark, neutrinos, muon, protons, neutron,...
Bosons: photon, W,Z,Gluon

e We call level the single particle energy eigenstate
&1 label state
Total energy of N particles
N

E = éik
k=1
i= state
k=label of particle
* We call occupation number 7; the number of particles in energy level &;

oo
E = z m;&;
i=0

e We can describe a microscopic state in terms of the sequence of occupation numbers
{mk} = {mOJ ﬁ\lll mZP ey mN }
Consider a gas of particles occupying volume V at equilibrium with temerature T, and compute
the Grand Canonical Ensemble

Z= Z zNZy
N=0

N= number of functions
z = e B = fugacity
Zy =Partition function

= ZN e_ﬁ Zk My

N {my}
N
Y.y ii= sum over different number of particle

Yk i=sum over levels
Z{mk} i=sum over all possible sequences of occupation number subject to the
N

constraint Y,;_o My = N
Our first task is to solve constraint!
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= 72k Mg =B X Mk
N {my}
N

_ Z Z B Sk Muc(r-1)

N {my}
N

= e B Li Mi(Er—1)

{m}
{m,} <no constraints

- Z H[e—ﬁ(ék—u)]ﬁ‘k

{me} k

_ Z Z Z e PE] [ -A@-w]™

mo myq mp

= Eﬂi [e—ﬂ(ék—u)]ﬁ‘k]

mE=0
We managed to carefully rewrite Z as summations done level-by-level
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Quantum gas

14 December 2011
09:16

Grand canonical ensemble

Z= Z ZNZy
N [o'e] [o'e]
-11 [ > lexp—pé - I
k=0

ME=0
k=levels
M, =occupation number of level
NO CONSTRAINTS

Fermion
T/ﬁk = 0,1
Z[+e—[3(@k—#)]fﬁk = [eF@]° 4 [e B0 = 1 4 e=BE-w

My

7 = 1_[[1 + e BEw)]
k=0

Equation of state

[o0]

PV R
—=InZ=1In 1_[[1 + e PE-W]

kT
k=0
- Z In(1 + e~FEw)
k

k=levels
Occupation number zV = efH: Fugacity

<N > :Z<nk>

K
Average total number of particles in terms of average occupation numbers

<N> = 81 Z
=z5 n

Z
6 .
= Zgzk: ln(l + Ze_BEk)

=2 (1)
B "1+ ze P
3

By comparing term by term

1
<My > = RGm
Fermi-Dirac Distribution
Bosons
M = 0,1,2,3, ...
(e—B(@k—H))ﬁlk _ (e—ﬁ(ek—m)O n (e—ﬁ<ek—u))1 n (e—ﬁ@k—m)z n (e—ﬁ(ek—mf 4o
Mp=0
GEOMETRIC SERIES!
1
T 1-eBG-w
P 1
= Z 1— e-BGr-n
K
Eq state
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PV .
R — _ o~ BE—w)
T InZ kg ln(l e )

0
<N> =z—InZ
662
= = — _ﬂgk
252[ zk:ln(l e )

1 )
= Z(_Z) o (e )

k
e_ﬁ(gk_ﬂ)
- Z 1 — e BGEm
k
e BE—1) % 1
- Z e BE— W [ePE—m — 1]
k
~ 1
- Z 1+ PG
k
1

<1’flk>=

—1 + eBE—1)
Bose-Einstein distribution

1
T el 4 g
s=-1 for bosons (Bose-Einstein)
s=+1 for fermions (Fermi-Dirac)
s=0 for semi-classical (Maxwell-Boltzmann)

fx wpB)

< My >

<m>
\\ Classical
Bosons
Fermions \
x};\
NN

Fixed change
Fermions

u
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T smali

(B large)

N

Bosons

A

High T
Low f8
Low T
Highp

To sumarise
1. Derived Quantum Gas distributions (with G. Canonical
2. Atlarge T, or at large energy, all distributions agree with classical mechanics in physics
3. Atlow-T, huge differences appear
Bosons, fermions completely different
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Homework
15 December 2011

09:08

Relativistic GAS

Hi = CPl'
i=1,..,.N
N=number particles

P, = /Pizl + P% + P4
N
H = ZHL

Set h=1, compute partition function

1 fd3Nq d3Np e—BH

Zy = N'
= mf d*pid3qie PHd3p,d3q e FH2d3pyd3gs .
1 _ N
= m[f d3p,d3qqe BHl]
Polar coordinates in P;
d3p, = dOd¢dp,p? sin 6
[ dod¢ sind = 4n
H; does not depend on coordinates g,
Jd3q, =
1 N 2 ,—Bcp N
=m(4nV) [f dp p?e |
@ 2
f dx x?e™9% = —
9
(47TV)N
sl
_ (47TV)N 2k373)"
N c3
B (coVT3HN
N
F=—kTInZy
(coVT3HN
= —NkTIncoVT3 + kT In N!
= —NkT In(coVT3) + kT (NInN — N)
= —NkT[In(coVT3) —InN + 1]
1=1Ine
coVTe
= —NkT [ln ]
Since ¢, is arbitrary constant, ¢y — ecg
coVT?
= —NkT In
Pressure
_ 6F
8V
6 NET1 coVT?
7 !
NkT
%4
Entropy
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6F

S=——
6T
6 NIT] coVT3
T T .
__r + 3Nk
T
Internal energy
U=F+Ts
F
= F+T(—F+3Nk>
= 3NkT
Specific Heat
6U
C, = 3= 3Nk
This result does NOT agree with the naive version of the equipartition theorem because it does NOT
depend quadratically on P!
However: it does agree with the generalized equipartition theorem
6H
<X 5_XJ > = del]
H = H(x;)
<Dpqe,..
Then
6H
x— = 2x?=2H
Ox
<H> —1< 6H> —1kT
25 % T T2
Sum over all phase-space variable that enter guadratically
In exercise
H=cp
P 0 H=cp=H
sp T PT
Exercise

N molecules of same diatomic gas with

1 1 1 1
Hi = ﬁpiz +lez +5Pi2 +_‘u(l)2(R _Ro)z

2
iPiz + %,uwZ(R — Ry)? —vibrational modes

Phase-space for each molecule

{P.Q,1,6,9,R ¢}
12= 3321111

{1, 91, P2, a2}
Ja*e

d3NQ d3Np d?NL dNodN pdVR dP x (sin & RH)N
Compute Zy

3 5
T2T3T3
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