Revision

19 January 2012 11:01

Tip:

Revise in detail <u>ALL</u> the QM exercises done in class.

Basic concepts (part A in particular)

- 3 laws of thermodynamics
- State function
- Thermodynamic potential
- Maxwell relations (8 of them) (Remember minus signs!)
- Ensembles:
 - \circ Microcanonical
 - Canonical
 - Grand Canonical
- Quantum gas Distributions
- Equipartition theorem
- Chemical potential (μ)

QM vs Classical

- 1. Role of h and it's meaning
- 2. Gibbs paradox Factor of $\frac{1}{N!}$
- 3. Third law
- 4. Violations of equipartition theorem

Practical level

Classical	QM
Phase-state Γ	Discrete
Hamiltonian H	Energy
Н: Г	Levels
Integrals \leftrightarrow	Resum series (eg. exponential,
	geometric, arithmetic)

Microcanonical

Classical

$$\Omega = \frac{1}{h^N N!} \int_{E < H < E + \Delta} d^{3N} q \, d^{3N} p$$

Careful about *N*! Integral depends on what it is

Quantum

 Ω =number of different configurations at microscopic level yielding the same macroscopic quantities (E,N,V)

Compute entropy

 $S = k \ln \Omega$ When possible, invert $S(E) \rightarrow E(S)$

Use maxwell relations

$$T = \frac{\delta E(S)}{\delta S} = \left(\frac{\delta S(E)}{\delta E}\right)^{-1}$$

$$P = -\frac{\delta E}{\delta V}$$
$$C_V = \frac{\delta E}{\delta T}$$

<u>Canonical</u> (partition function)

Classical

$$Z_N = \frac{1}{N! h^N} \int_{\Gamma} d^{3N} q \, d^{3N} p \, e^{-\beta H}$$

$$d^{3N} q \, d^{3N} p \text{ must be generalized to appropriate } \Gamma$$

Careful with N!
No constraint on integral

Quantum

 $Z_N = \sum_{\{\widehat{m}_k\}} e^{-\beta \sum_k \widehat{m}_k \widehat{e}_k}$ $\hat{\epsilon}_k$ energy levels \widehat{m}_k occupation number How many possible on this level Σ_k sum over levels $\{\hat{m}_k\}$ Summation over all possible choices of occupation number

Compute

$$F = -kT\ln Z_N$$

Maxwell

$$S = -\frac{\delta F}{\delta T}$$
$$P = -\frac{\delta F}{\delta V}$$

Use

$$F = U - TS$$
$$U = E$$

Grand Canonical

- Write (possibly compute) *Z_N*
 - QM or classical determines partition function
- Define

$$Z = \sum_{N} z^{N} Z_{N}$$

Z= grand partition function

- Z_N =partition function z^N =Fugacity $z = C^{\beta\mu}$
- - Substitute in ONLY at very end
- $\Sigma_N =$ sum over all possible number of particles
- Equation of state

$$\frac{PV}{kT} = \ln Z$$

• Average number of particles

$$\langle N \rangle = z \frac{\delta}{\delta z} \ln Z$$

• Internal energy

$$E = U = \langle H \rangle = -\frac{\delta}{\delta\beta} \ln Z$$
$$Z = Z(\beta, z)$$

2009 past paper

A1:

1st law differential form

dU = T dS - P dV $dU = \delta Q - \delta W$ $\delta Q \text{ not a differential}$ Helmoltz F = U - TS dF = d(U - TS) = TdS - PdV - TdS - SdT = -SdT - PdVMaxwell relations because <u>dF is exact</u> $dF = \left(\frac{\delta F}{\delta T}\right) dT + \left(\frac{\delta F}{\delta V}\right) dV$ $\Rightarrow \begin{cases} S = -\frac{\delta F}{\delta T} \\ P = -\frac{\delta F}{\delta V} \end{cases}$

A2: Photon gas

$$F = -\frac{a}{3}VT^{4}$$
Maxwell relations
$$S = -\frac{\delta F}{\delta T} = \frac{4a}{3}VT^{3}$$

$$P = -\frac{\delta F}{\delta V} = \frac{1}{3}aT^{4}$$

$$U = E = F + TS = -\frac{a}{3}VT^{4} + \frac{4}{3}aVT^{4} = aVT^{4}$$
EQ of state: Relation between microscopic quantities
P,V,E in this case

$$PV = \frac{1}{3}aVT^4$$
$$\Rightarrow PV = \frac{1}{3}E$$

Adiabatic transformation: Reversible and $\delta Q = 0$ Remember that $dS = \frac{\delta Q}{r}$

$$\Rightarrow dS = 0$$

$$d\left(\frac{4}{3}aVT^{3}\right) = 0 \Rightarrow VT^{3} = constant$$

$$P = \frac{a}{3}T^{4} \Rightarrow VP^{\frac{3}{4}} = constant$$

A3

Chemical potential

$$\mu = \frac{\delta F}{\delta F}$$

 $\frac{\mu - \frac{\delta N}{\delta N}}{\text{Assume F independent of N}}$

$$\Rightarrow \mu = 0$$

Number of particles is not fixed by physics considerations

<u>2011</u> A1

$$< \hat{m} > \frac{1}{-1 + e^{\beta(\epsilon - \mu)}} \\ \text{Bose-Einstein} \\ < \hat{m} > \frac{1}{e^{\beta(\epsilon - \mu)}} \\ \text{Maxwell-Boltzmann} \\ < \hat{m} > \frac{1}{1 + e^{\beta(\epsilon - \mu)}} \\ \text{Fermi-Dirac}$$

Microscopic Fundamental difference

<u>Bose-Einstein</u>: Obeyed by bosons for which the wave-function is <u>symmetric</u> under exchange of identical particles

<u>Fermi-Dirac</u>: same but <u>anti-symmetric</u>

<u>Maxwell-Boltzmann</u>: Just a model, no physical realization in nature For fixed β , μ , and large $-\epsilon$ they coincide

In this limit, classical mechanics is a very good approximation