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I. THE BASICS

In this section we review the standard statistical method for estimating the mean of a set of data with noise, as
well as the error bar in the mean.

We are given a set (sample) of N random variables, xi, i = 1, 2, · · · , N , which are uncorrelated. We denote sample

averages by an overbar, so, for example, the sample mean and variance are given by

x =
1

N

N
∑

i=1

xi , (1)

σ2
samp = x2 − x2 . (2)

We also denote exact averages by angular brackets, 〈· · · 〉, e.g. for the mean, which we also write as X,

X ≡ 〈x〉 =

∫

xP (x) dx, (3)

where P (x) is the distribution of x from which the sample is drawn. Similarly the exact variance, σ2, is given by

σ2 ≡ 〈x2〉 − 〈x〉2 = 〈(x − 〈x〉)2〉. (4)

We have available the single set of data xi. However, it is conceptually useful to imagine performing many repetitions

(of the experiment or simulation). If the number of repetitions is large enough, then an average over them will, to
a good approximation, correspond to the exact average. For example, if we average the sample mean over many
repetitions we get the exact mean of x since

〈x〉 =
1

N

N
∑

i=1

〈xi〉 = 〈x〉 ≡ X. (5)

This result is obvious but also useful because it tells us that the sample mean is an unbiased estimate for the exact
mean, in the sense that the average of the sample mean, over many repetitions, is the exact mean. An unbiased
estimate will become more and more accurate as the number of data points is increased. However, a biased estimate
not continue to improve with increasing N once the error is smaller than the bias. Hence we should work with unbiased

estimators.

We will also be interested in the variance of the sample mean (again averaged over many repetitions). We find that

σ2
x ≡ 〈x2〉 − 〈x〉2 =

1

N2
〈
∑

i,j

xixj〉 −
1

N2
〈
∑

i

xi〉2 =
N(N − 1)

N2
〈x〉2 +

N

N2
〈x2〉 − 〈x〉2 =

1

N

(

〈x2〉 − 〈x〉2
)

=
σ2

N
. (6)

However, this involves the variance of the exact distribution, which in general we don’t know. Rather we want to
get an estimate of the variance of the sample mean using only data in the sample. We shall now see that an estimate

of the exact variance σ2 can be obtained from the variance of the (single) sample, σ2
samp, defined in Eq. (2). Averaging

σ2
samp over many repetitions gives

〈σ2
samp〉 =

1

N
〈
∑

i

x2
i 〉 −

1

N2
〈
∑

i,j

xixj〉 =
N − 1

N

(

〈x2〉 − 〈x〉2
)

≡ N − 1

N
σ2. (7)

Hence, from Eqs. (6) and (7), an unbiased estimate for σ2
x is (δx)

2
where

(δx)
2

=
σ2

samp

N − 1
. (8)
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We will use δx to be a measure of the uncertainty in the sample mean. Hence our estimate of the exact average 〈x〉
from the single set of data, xi, (i = 1, · · · , N), is

x ± δx = x ± σsamp√
N − 1

. (9)

Note that it just involves the sample mean x and sample standard deviation σsamp. Usually N is large, in which case
the difference between N − 1 and N is unimportant.

II. HOW CAN BIAS ARISE?

In the previous section we saw that x provides an unbiased estimate of the exact average and σsamp/
√

N − 1 provides
an unbiased estimate of the uncertainty in this average.

Now suppose that we generate random values for the xi but want to estimate not the average of x itself but some

function of the average of x, i.e. f(〈x〉) ≡ f(X). As an example, we may want to compute 〈x〉2, in which case
f(X) = X2. A poor way to estimate this would be from

f ≡ f(x) =
1

N

N
∑

i=1

fi where fi = f(xi). (10)

However, this is really an estimate for 〈f(x)〉, rather than f(〈x〉). As an estimate for the latter it is bad because it is
biased , i.e. repeating the set of N measurements M times (where M is large) and averaging over them does give the
exact answer for M → ∞. In other words

〈 f 〉 6= f(X). (11)

The difference is given by

〈 f 〉 − f(X) =

∫

P (x) (f(x) − f(X)) dx

= f ′(X)

∫

P (x)(x − X) dx +
1

2
f ′′(X)

∫

P (x)(x − X)2 dx + · · ·

=
1

2
f ′′(X)

[

〈x2〉 − 〈x〉2
]

+ · · ·

=
1

2
f ′′(X)σ2 + · · · , (12)

which is of order unity, i.e. it does not vanish for N → ∞. The third line follows because X ≡ 〈x〉 =
∫

P (x)x dx and
P (x) is normalized i.e.

∫

P (x) dx = 1. The neglected terms in Eq. (12) involve higher moments of the distribution of
x − X. As expected, there is no bias if f is a linear function because then f ′′ = 0 and the neglected terms involve
derivatives higher than the second which also vanish.

A better, i.e. less biased, estimate for f(X) is clearly f(x). Repeating the steps in Eq. (12) gives

〈 f(x) 〉 − f(X) =
1

2
f ′′(X)

[

〈x2〉 − 〈x〉2
]

+ · · ·

=
1

2N
f ′′(X)σ2 + · · · , (13)

where we used Eq. (6). In other words, the bias is of order 1/N rather than order 1. Since the statistical error in

f(x) is of order 1/
√

N , which is much bigger than 1/N for large N , the bias in f(x) can usually be neglected.
We have seen that a generally satisfactory estimate for f(X) is given by f(x). However, we would also like to

estimate the error in this estimate. A convenient way to do this is to use jackknife and bootstrap ideas, which are
discussed in the rest of this handout.

III. ESTIMATE OF ERROR WHEN THERE IS BIAS USING JACKKNIFE

In the last section we saw that if N is large. then a satisfactory estimate for f(X) is f(x). However, we do not
yet know how to estimate the error in this value. The result in Eq. (9) is just for the average of the data 〈x〉, not
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some function f of the average. In this section we will explain how estimate the error in using f(x) as an estimate
for f(X), do this using jackknife methods.

Clearly f2 −
(

f
)2

is the variance of f(x) not f(x), and so cannot be used to get the uncertainty in the latter, since
we saw in the previous section that they are quite different. This is where the jackknife and bootstrap resampling
methods comes in. This section discusses jackknife and the next section will discuss bootstrap.

We define the jackknife averages, xJ
i by

xJ
i ≡ 1

N − 1

∑

j 6=i

xj , (14)

so xJ
i is the average of all the x-values except xi. Similarly we define

fJ
i ≡ f(xJ

i ). (15)

We now state that the jackknife estimate of f(X) is the average of the fJ
i , i.e.

f(X) ≃ fJ ≡ 1

N

N
∑

i=1

fJ
i , (16)

and the uncertainty in this estimate, σ
f(x)

, is given by

σ
f(x)

=
√

N − 1 σfJ (17)

where

σ2
fJ ≡ (fJ)

2 −
(

fJ
)2

. (18)

In the rest of this section we will prove these results. Note that the factor of N − 1 in Eq. (17) is in the numerator,
whereas in the corresponding expression for the original (i.e. unjackknifed) quantities, Eq. (9), there is a similar factor
in the denominator. One can easily show that if f(x) = x, so there is no bias, the jackknife estimates are identical to
the estimates from the original data points, xi, i.e.

xJ = x, (N − 1)σ2
xJ =

σ2
samp

N − 1
. (19)

There is a difference, however, in the presence of bias. We shall now show that Eqs. (16) and (18) give estimates
for f(X) and its error which are unbiased for large N .

The bias in fJ
i is given by 〈fJ

i 〉 − f(X). Defining δxi = xi − X, then

xJ
i ≡ 1

N − 1

∑

j 6=i

xj = X +
1

N − 1

∑

j 6=i

δxj . (20)

Now the typical value of (N − 1)−1
∑

j 6=i δxj is of order 1/
√

N for large N , and so is small. Hence it makes sense to

expand fJ
i about f(X) using a Taylor series, i.e.

〈fJ
i 〉 =

〈

f



X +
1

N − 1

∑

j 6=i

δxj





〉

= f(X) +
f ′(X)

N − 1

∑

j 6=i

〈δxj〉 +
1

2

f ′′(X)

(N − 1)2

∑

j 6=i

∑

k 6=i

〈δxjδxk〉 + · · ·

= f(X) +
1

2(N − 1)
f ′′(X)σ2 + · · · . (21)

Since this expression is independent of i we also have

〈fJ 〉 − f(X) =
1

2(N − 1)
f ′′(X)σ2 + · · · . (22)
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Higher order terms are of higher order in 1/N . We see that the bias vanishes for N → ∞, and is essentially the same
as the bias in f(x), see Eq. (13), except that N is replaced by N − 1. For large N we can, if we wish, eliminate the
leading, O(1/N), contribution to the bias and estimate f(X) from

f(X) ≃ Nf(x) − (N − 1)fJ . (23)

The resulting bias will then normally be of order 1/N2. However, this 1/N correction to the mean is usually negligible

because the statistical error is of order 1/
√

N , which is much larger if N is large, as is usually the case.
Next we discuss the uncertainty in our estimate of f(X) from f(x). The standard deviation of f(x), obtained by

repeating the measurements many times, is given by σ
f(x)

where

σ2

f(x)
≡ 〈f2(x)〉 − 〈f(x)〉2 . (24)

We evaluate the exact averages by assuming the N is large so x differs only slightly from X. This gives

σ2

f(x)
=

1

N
f ′(X)2σ2 + · · · , (25)

where the omitted terms are higher order in 1/N .
We will now estimate estimate the right hand side of Eq. (25) from the variance of the jackknife estimates in

Eqs. (18). Averaging Eq. (18) over many repetitions, gives

(N − 1) 〈σ2
fJ 〉 =

1

N
f ′(X)2σ2 + · · · , (26)

= σ2

f(x)
+ · · · , (27)

where the last line used Eq. (25) and again the omitted terms of higher order in 1/N . Eq. (27) shows that, for large
N , an unbiased estimate for the error in f(x) is

√
N − 1 σfJ , as stated earlier in Eq. (17).

Rather than using jackknife, one could estimate the error in f(x), by “error propagation”, i.e. by directly using
Eq. (25). However, the jackknife has the advantage that it automatically takes care of error propagation even
in complicated situations where there are many variables for which it would be tedious to compute all the terms
contributing to the error.

The above method effectively puts the N data points into N groups each with 1 point. The jacknife acts on N
datasets, each of which contains all groups but one. One can generalize the jackknife method to grouping the N data
points into Ngroup = N/m groups each with m points. The jackknife then acts on Ngroup datasets each of which
contains the N − Ngroup data points in all groups but one. The generalization of the expression for the error bar,
Eq. (17), is

√

Ngroup − 1 σfJ (28)

and that for the elimination of the leading piece of the bias in the mean, Eq. (23), is

Ngroupf(x) − (Ngroup − 1)fJ . (29)

We now give some example of the use of jackknife.

A. Example 1

We compute cos(〈x〉) where xi = π/3 + ǫi where ǫi is a Gaussian random variable with zero mean and standard
deviation unity. We took a sample of N = 1000. The jackknife estimate of the mean was 0.4916, with an error
estimate of 0.0280 which is consistent with the exact value of 0.5. For comparison cos x was also equal to 0.4916 to
this precision. Using Eq. (23) to get a less biased estimate of the mean, and using the full precision of the numbers
in the computer, gives 0.4919. The difference between 0.4916 and 0.4919 is completely unimportant since the error
bar of 0.0280 is very much larger.
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B. Example 2

Jackknife (and bootstrap) can be used to compute error bars for quite general functions of the data set. For
example, one can use the jackknife and bootstrap resampling schemes to estimate parameters describing the shape of
the distribution from the data set. An example, which is also used in my research in phase transitions (where it is
called the “Binder ratio”), is the “kurtosis”, g, defined by

g =
〈δx4〉
〈δx2〉2 , (30)

where δx = x − 〈x〉. Since the total power of x in the numerator and denominator is the same, the kurtosis depends
only on the shape of the distribution and not on its overall scale. It takes the value 3 for a Gaussian distribution.

In the example I took N = 1000 points from a Gaussian distribution and computed the kurtosis using the jackknife
method. (Since I knew that the mean is zero I assumed 〈x〉 = 0.) For each of the N jackknife data sets I computed g
and obtained an average and error bar using Eqs. (16) and (17)–(18) above. The result is

g = 3.090 ± 0.145 (31)

which is consistent with the exact value of 3.

C. Example 3

It is also argued that the jackknife method can also be used to estimate error bars in fit parameters, see e.g. B.
Efron The Jackknife, the Bootstrap and Other Resampling Plans, SIAM (1982), § 3.8. The idea is to fit all the data
points minus one and repeat this for all choices of the missing point. If the i-th data point is omitted we denote the
resulting jackknife estimate of the α-th fit parameter, aα, by aJ

i,α. According to Efron, the covariance matrix is then
given by

(COV)α,β =
N − 1

N

N
∑

i=1

[

aJ
i − aJ

]

α

[

aJ
i − aJ

]

β
, (32)

where

aJ
α =

1

N

N
∑

i=1

aJ
i,α. (33)

We illustrate this with some data. In a quadratic fit of 50 points with Gaussian noise to 3− 2x + x2, the following
results were obtained:

50 points: Jackknife fits

fit parameters

3.01221 1.97836 -1.00207

error bars

0.01907 0.08472 0.07789

covariance matrix from jackknife

0.00036 -0.00140 0.00113

-0.00140 0.00718 -0.00642

0.00113 -0.00642 0.00607

Least squares fit

fit parameters

3.01218 1.97847 -1.00217

error bars

0.02123 0.09807 0.09496

covariance matrix

0.00045 -0.00180 0.00150

-0.00180 0.00962 -0.00902

0.00150 -0.00902 0.00902

chisq = 33.91606
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Note that the results for the fit parameters from the jackknife and conventional least square fits are similar, though
the jackknife somewhat underestimates the error bars (is this a general trend?). If we go to 500 data points, though,
the differences in the error bars between the two approaches become tiny:

500 points: Jackknife fits

fit parameters

3.00663 1.98693 -0.99771

error bars

0.00680 0.03117 0.03040

covariance matrix from jackknife

0.00005 -0.00018 0.00015

-0.00018 0.00097 -0.00091

0.00015 -0.00091 0.00092

Least squares fit

fit parameters

3.00663 1.98693 -0.99771

error bars

0.00671 0.03098 0.03000

covariance matrix

0.00005 -0.00018 0.00015

-0.00018 0.00096 -0.00090

0.00015 -0.00090 0.00090

chisq = 547.36826

Is there any advantage of estimating errors in fit parameters from Jackknife rather than a standard least square
analysis? Presumably not in this example, but perhaps there could be in more complicated situations.

IV. THE BOOTSTRAP

The bootstrap, like the jackknife, is a resampling of the N data points xi. Whereas jackknife considers N new data
sets, each of containing all the original data points minus 1, bootstrap uses Nboot data sets each containing N points
obtained by random (Monte Carlo) sampling of the original set of N points. During the Monte Carlo sampling, the
probability that a data point is picked is 1/N irrespective of whether it has been picked before. (In the statistics
literature this is called picking from a set “with replacement”.) Hence a given data point xi will, on average, appear
once in each Monte Carlo-generated data set, but may appear not at all, or twice, and so on. The probability that xi

appears ni times is close to a Poisson distribution with mean unity. However, it is not exactly Poissonian because of
the constraint in Eq. (34) below. It turns out that we shall need to include the deviation from Poisson distribution
even for large N . We shall use the term “bootstrap” data sets to denote the Monte Carlo-generated data sets.

More precisely, let us suppose that the number of times xi appears in a Monte Carlo-generated data set is ni. Since
each bootstrap dataset contains exactly N data points, we have the constraint

N
∑

i=1

ni = N . (34)

Consider one of N variables xi. Each time we generate an element in a bootstrap dataset the probability that it is
xi is 1/N , which we will denote by p. It is then standard that the probability that xi occurs ni times is a binomial
distribution

P (ni) =
N !

ni! (N − ni)!
pni(1 − p)N−ni . (35)

It is then also standard that the mean and standard deviation are given by

[ni]MC
= Np = 1 , (36)

[n2
i ]MC

− [ni]
2
MC

= Np(1 − p) = 1 − 1

N
, (37)

where [. . . ]
MC

denotes an exact average over bootstrap samples (for a fixed original data set xi). For N → ∞, the
binomial distribution goes over to a Possion distribution, for which the factor of 1/N in Eq. (37) does not appear. We
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assume that Nboot is sufficiently large that the bootstrap average we carry out reproduces this result with sufficient
accuracy. Later, we will discuss what values for Nboot are sufficient in practice. Because of the constraint in Eq. (34),
ni and nj (with i 6= j) are not independent and we find from Eq. (37) that

[ninj ]MC
− [ni]MC

[nj ]MC
= − 1

N
(i 6= j) . (38)

First we consider bootstrap averages of x, for which, if course, there is no bias, and so bootstrap is not necessary.
However, it shows how to get averages and error bars in a simple case, which is then easily generalized to more
complicated situations which do have bias.

We denote the average of x for a given Monte Carlo data set by xB
α , where α runs from 1 to Nboot, i.e.

xB
α =

1

N

N
∑

i=1

nα
i xi . (39)

Still for a fixed original data set xi we compute the bootstrap average of the mean of x and the bootstrap variance in
the mean, by averaging over all the bootstrap data sets. We assume that that Nboot is large enough for the bootstrap
average to be exact, so we can use Eqs. (37) and (38). The result is

xB ≡ 1

Nboot

Nboot
∑

α=1

xB
α =

1

N

N
∑

i=1

[ni]MC
xi =

1

N

N
∑

i=1

xi = x (40)

σ2
xB ≡ (xB)

2 −
(

xB
)2

=
1

N2

(

1 − 1

N

)

∑

i

x2
i −

1

N3

∑

i6=j

xixj , (41)

where

(xB)
2 ≡ 1

Nboot

Nboot
∑

α=1

[

(

xB
α

)2
]

MC

. (42)

We now average Eqs. (40) and (41) over many repetitions of the original data set xi. Averaging Eq. (40) gives

〈xB〉 = 〈x〉 = 〈x〉 ≡ X . (43)

This shows that the bootstrap average xB is an unbiased estimate of the exact average X. Averaging Eq. (41) gives

〈

σ2
xB

〉

=
N − 1

N2
σ2 =

N − 1

N
σ2

x , (44)

where we used Eq. (6) to get the last expression. Since σx is the uncertainty in the sample mean, we see that

√

N

N − 1
σxB , (45)

is an unbiased estimate of this uncertainty. Remember, σxB is the standard deviation of the bootstrap data sets.
Usually N is sufficiently large that the square root in Eq. (45) can be replaced by unity.

As for the jackknife, these results can be generalized to finding the error bar in f(X) rather than X. One computes
the bootstrap estimates for f(X), which are

fB
α = f(xB

α ) . (46)

The final bootstrap estimate for f(X) is the average of these, i.e.

fB =
1

Nboot

Nboot
∑

α=1

fB
α . (47)

Following the methods in the jackknife section, one can show that the uncertainty in this estimate is

√

N

N − 1
σfB , (48)



8

where

σ2
fB = (fB)

2 −
(

fB
)2

, (49)

in which

(fB)
2 ≡ 1

Nboot

Nboot
∑

α=1

(

fB
α

)2
. (50)

Equation (49) corresponds to the result Eq. (45) which we derived for the special case of f(x) = x. Again following
the same path as in the jackknife section, it is straightforward to show that Eqs. (47) and (49) are unbiased estimates
for N large. However, if N is not too large it may be useful to eliminate the leading contribution to the bias in the
mean, as we did for jackknife in Eq. (23). The result is

2f(x) − fB . (51)

The bias in Eq. (51) is of order 1/N2, whereas f(x) and fB each have a bias of order 1/N .
I have not systematically studied the values of Nboot that are needed in practice to get accurate estimates for the

error. It seems that Nboot in the range 100 to 500 is typically chosen, and this seems to be adequate irrespective of
how large N is.

We now show three examples. The first two are the same as the first two in the jackknife section, with the same

data set xi.

A. Example 1

With Nboot = 100 data sets I found 0.4927 ± 0.0279. This is consistent with the exact value of 0.5 and very close
to the jackknife result.

B. Example 2

The kurtosis is found for each of the Nboot = 100 bootstrap samples, and the mean and error bar obtained from
Eqs. (47) and (48)–(49). The result is

g = 3.072 ± 0.1320 , (52)

which agrees well with the jackknife estimate and is consistent with the exact value of 3.

C. Example 3

For most problems, the jackknife and bootstrap methods give similar results. However, there is at least one class of
problems where the jackknife approach is unsatisfactory, because the data sets are too similar to each other, while the
bookstrap method works. This is the calculation of the median and related quantities. I am very grateful to Mathias
Körner for helpful discussions on this point.

The median is the value of x such that half the data points are greater than x and half less than x. When there is
an odd number of data points, the median is simply the middle one. When there is an even number of data points,
the median is the average of the two middle ones. Suppose that N is even and we have sorted the xi, then the median
of the whole data set is (xN/2 + x(N/2)+1)/2, while the median of half the jackknife sets is xN/2 and that of the other
half is x(N/2)+1. Since the jackknife data sets only give one of two possible results for the median, the method cannot
give a reliable estimate for the error in it. A similar argument shows that also if N is odd only two values for the
median are obtained from the jackknife approach.

However, in bootstrap, the Nboot data samples are significantly different from each other, so the error in the median
can be estimated. As an example, I took N = 1001 data points generated from the positive half of a Lorentzian:

P (x) =











2

π

1

1 + x2
(x > 0) ,

0 , (x < 0) .

(53)
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Note that this is a very broad distribution for which even the mean is not defined. However, the median is defined
and a standard integral gives the value 1.

Including all 1001 values of xi, I found the median to be 0.9613. Using bootstrap with Nboot = 5000 data sets I
found 0.9603 ± 0.0507. We see that the overall average and the mean of the bootstraps are very close, and the result
agrees with the exact value of 1 within the error bar.


