Euler-Lagrange

b
I = f f(g,9")dx

Is extremised when

Sf d (Sf)
Sg T dx 69’
Examples:

a) Soap bubble- surface tension acts to minimise surface area
b) Hamilton's principle in classical mechanics in 1d example we recovered f=ma
Generalisations
1) Integrals in more than 1 dimension e.g.
I = f (90,22 29 )d d
= X X, dxy ...
g 6 X 5 2 1 2
X = (xlleI )
Euler-Lagrange equation

5f 6 / of
5 = (;@z;)

Summation over repeated index is implied
2) If there are more fields, g, e.g. f(g,h, g',h"), we have Euler Lagrange equations for each one.
If the fields are g1, 92,93 - Im

We have
6f o) 6f
6ga (Sxi <5 (8_9L1)>
63(1'
This is m equations for a=1, .., m
Example:

A real particle physics Lagrangian

AV 242
((S‘xl) <6x ) mé
i=0,1,2,3
x; = gijx’
1 0 0 0
[0 -1 0 0
9i={o 0o -1 o0
0 O 0o -1
We will get our equations of motion by extremising

fL d*x

i.e. integrate over whole space-time
Now just put this into Euler-Lagrange equation:

6L &6 6L
(o)

ox;

oL — om?
5o e

6L 5 Y0
5(32)

5xl-

-write it out long hand, or think of
6d &b 6d 6¢

_— )

8x; Oxt =4 6x; Ox;
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So Euler-Lagrange
0 Y0
=1 —2 2 - <2 ——.)
m¢ ox; \ Oxt
:>2_(88+88+88+88)
m'e = 6xyg6x°  6x, 6x1  8x,6x%  Sxg6x3
82 82 82 82
- (ETECE_S_{Z _Sﬁ>
82
2 —
= <EE—V +m>¢ =0
(*)
This is the Klein-Gordon equation
Consider plane-wave solutions
d) — eilg.g—iwt
Subbing into (*),
[—w? +k.k+m?lp =0
For this to be a solution we need w? = |k|? + m?
cf. E? =p?+m?

The klein-gordon equation describes relativistic scalar particles of mass m.
Notes

1= ()3
Looks (a bit) like KE-PE

i) m2¢p? term gives the mass to the particle
Differential Equations
3) Series solutions (Frobenius' method)
Considery” + P(x)y' + Q(x)y =0
(**)

[linear, 2nd order, homogeneous (no RHS)]

Some definitions
If as x = xq: P, Q finite — x, regular point
If (x — x0)P, (x — x0)?Q finite - x, is regular singular point
If (x — xo)P or (x — x,)?Q diverge — x, is irregular singular point

Fuch's theorem
If x, is regular or regular singular there exists at least one power series solution to
G

Method
Assume a solution of the form

a
Ny e—
n=0

co#0
Sub into (x) and expand. Then set coefficients to ensure each power of x — x vanishes

¢

Example. consider a power series solutionto y’’ +y = 0 about x = 0

Set
a
y= e
=0

n
And sub in

[24
Z Co((n+0)(n+0—1)x"+072 4 x™0) =0
n=0
Write out sum

coo(6 —1)x°2 +c;(6+ D(0)x7 L+ (6 + 2)(0 + 1)x% + cox°
+x™%(n+0+2)(n+0o+1)+c,x™0=0
For the whole thing to vanish, we need the coefficients of each power of x to vanish.
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=co(0—1)=0=>0=0,orc=1ascy, #0
ci(c+1)o=0
Chizon+o+2)(n+0+1)+c¢, =0
i) Indicial equation: Look at the lowest power of x. Remembercy, # 0 = d(c—1) =0 org =0
ii) Nextorder: Weneedc;(c+1)a =0
Options:
fo=1=C;=0
If 6 = 0 = (; is not determined
-Corresponds to mixing in an arbitrary amount of the other sol'n
In order to separate the two solutions, we consider ¢; = 0
iii) General power
Chio(n+2+0)(n+1+0)+¢c, =0
CTL

T (n+2+0)(n+1+0)

= Cpy2 =

Two solutions

1) 6=0
Cn x? x*
M Ry T L Co{l 2wt }
= ¢y cos(x)
2) o=1
Cn . x3 x5
M [ R N { B }
= ¢y sin(x)
Comments

In this case, both solutions converge for all x.
(*) we have two power law solutions

Example 2.
17 y, 2 VZ
y +_r+ k —z y = 0about x =9

This is Bessel's equation- arises whenever you work in cylindrical polars. Recalling the
definitions r=0 is a regular singular point = we expect one series solution

Try
[24
y= curnte
n=0

Bang the guess into the equation
a

= Z cp{n+o)(n+o—1Dr"o 2 4 (n+ g)r"to 2 — y2pnto-2 4 f2pnto} =

n=0
Rearrange in terms of powers of r

=722 = v + 1 (o + D2 = vy +77(cz((0 4 2)% = v2) + cok?) + -
+ 1" (Cpa[(o + n+ 2)2 — V2] + k) + -

Again work power by power.

Indicial equation: 62 = v = 0 = +v

r°~1term: ¢; ((o + 1) —v?) = 0 = ¢; = 0 in general

General term: recurence relation

k?c,

2l (O + 1+ 2)° =V H enk® = 0=ty = (s

Solutions

_ |y k?r? +k4r4+
y=r 22+ 2v)

k?r? kr#
= r_v 1 —_ + + .-
y { 202 —2v) " 2(Z =) + (4—2v) }
In the 0 = —v case, the determinator factor in the recurence relation is

MmM+2-v)?2—-Vv2=m+2)(n+2-2v)
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As n is even in our expansion, this vanishes if v is an integer
= if v is an integer the coefficients of the ¢ = v solution blow up= bad!
For v =integer, we only have one solution

For v # integer at large n we have
Cn

C ~ —
n+2 le
=convergent for all r.
A second solution
In situations (such as v =integer case above) where we have only 1 soution= 2nd soluton

doesn’t have a power series expansion about r=0
=try a function of the form

y—Inx <Z cnx"*"’) + Z dpx™te

Subbing in to our equation gives 2 types of term. If the In(x) (¥, ¢, x™*) isnt hit by a
derivative, we have In(x) where our equationis Ly = 0

If a derivative hits the h(x) we have powers of x

The other class of term is

Z Cnxn+c + i(z(dnxnﬂr))

n

-coefficients are determined by ¢,
If we are to have solution, both sets of terms must vanish independently
If In(x) L(3c,x™*%) is to vanish. We must set Y., x™* to be the original power series
solution
The remaining power series terms are then determined order by order as before
2nd solution = In(x) (first solution)+(different power series)
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