05 December 2011 18:42

205 Lagrangian \rightarrow definition $L = T - V$ where \overline{T} $m\dot{x}^2$ $\overline{\mathbf{c}}$ V=potential

- Free Particle \rightarrow $\boxed{V = 0}$ \rightarrow $\boxed{L = \frac{m\dot{x}^2}{2}}$ 1. Free Particle \rightarrow $V = 0$ \rightarrow $L = \frac{mx}{2}$
- 2. Oscillator

$$
\rightarrow V = \frac{Kx^2}{2} \rightarrow L = \frac{mx^2}{2} - \frac{kx^2}{2}
$$

F=-kx

Action,

$$
S = \int_{t_0}^t L \, dt \, \dots
$$

Momentum action principle impose \rightarrow minimize the action $\delta S = 0$ \rightarrow find some eqs Euler Lagrange eps \boldsymbol{d} δL δL $\frac{\partial}{\partial x}$ \overline{dt} $\overline{\delta x}$ δL \boldsymbol{d} \rightarrow $=$ \rightarrow Dscillator $m\dot{x} \rightarrow$ $\delta \dot{x}$ \boldsymbol{d} δL $\rightarrow Free$ $\overline{0}$ $\overline{\delta x}$ \rightarrow F Oscillator $m\ddot{x} = -kx$ Much more complicated if mass \neq constant

Interference + diffraction $\psi = \psi_1 + \psi_2$ $\psi_1 \psi_2^* + \psi_2 \psi_1^*$ $P = |\psi_1|^2 + |\psi_2|^2$ $P = P_1 + P_2 + Interference$ term

211

Energy conservation

 $E_1 + mc^2$ 3-momentum conservation Where $\theta = \theta_3 + \theta_4$ $P_1 = P_3 + P_4$ Assume $E_3 = E_4$ \Rightarrow By conservation of transverse momentum \Rightarrow Consider a special case where the particle separate with equal energies $\Rightarrow |P_1|^2 = |P_3|^2 + |P_4|^2 + 2|P_3||P_4|$

So the conservation equations simplify

$$
E_1 + mc^2 = 2E_3
$$

\n
$$
E_1^2 - m^2c^4 = 2(E_3^2 - m^2c^4)(1 + \cos \theta)
$$

\n
$$
2
$$

\nUsing $E_1^2 - c^2|p_1|^2 = m^2c^4$ etc

Now solve these to find scattering angle θ as a function of the initial beam energy E_1 Algebra,

 $1 \Rightarrow E_1^2 - m^2 c^4 = (E_1 + mc^2)(E_1 - mc^2) = 4E_3(E_3 - mc^2)$ Compare 1 and 2 \Rightarrow 4E₃(E₃ - mc²) = 2(E₃² - m²c⁴)(1 + cos θ) = 2(E₃ + mc²)(E₃ - mc²) \Rightarrow $\overline{4}$ $2(E_3 + mc^2)$ \Rightarrow $E_3 - mc^2$ $E_3 + mc^2$ Finally, substitute for E_3 using $2E_3 = E_1 + mc^2$ \Rightarrow $E_1 - mc^2$ $E_1 + 3mc^2$ At low energies, $E_1 \approx mc^2$ \Rightarrow cos $\theta \approx 0 \Leftrightarrow \theta \approx 90^{\circ}$ So the particles scatter at right angles

this is the well known result in Newtonian dynamics (snooker without spin)

At high energies,
$$
E_1 \gg mc^2
$$

$$
\Rightarrow \cos \theta \approx 1 \Leftrightarrow \theta \approx 0
$$

The higher the energy, the smaller the scattering angle. The particles are scattered into a narrow forward cone. This is a very general result in relativistic scattering.

2+2 scattering in the CM frame

The analysis above was for the lab frame. Now recover the same result in the CM frame $\sim\sim$

Momenta are equal and opposite in x-direction Suppose the relative velocity of the CM frame and lab frame is v $\Rightarrow E_2^C$

Now we showed previously that the total CM energy for fixed-target scattering is

$$
E_{CM} = \sqrt{2m(E+m)}
$$

\n
$$
E_1^{CM} = \frac{1}{2}\sqrt{2m(E+m)}
$$

\nAnd since $E_1^{CM} = \gamma(v)m$
\n
$$
\Rightarrow \gamma(v) = \frac{1}{2m}\sqrt{2m(E+m)}
$$

\n
$$
\Rightarrow \sqrt{\frac{E+m}{2m}}
$$

This determines the velocity v at the CM frame relative to the LAB frame