The Algebraic Specification of

Multi-core and Multi-threaded
Microprocessors

Interim Document

Sean Handley, February 2007

Abstract

In addition to decreasing latency by increasing clock speeds, mod-
ern microprocessor architects improve efficiency by employing techniques
such as pipelining, multiple cores and multiple threads of execution in
order to achieve superior throughput. Such processors can be modelled
axiomatically using an algebraic specification language and a reductive
term-rewriting system, such as Maude. In this project, I seek to create
such models at varying levels of complexity. I begin with a programmer’s
view of the machine and proceed to develop pipelined, multi-core, super-
scalar and multi-threaded models.

Project Interim Document submitted to Swansea University
in Partial Fulfilment for the Degree of Bachelor of Science

Department of Computer Science
University of Wales Swansea

Contents

1 Progress Update 3
2 The Pipelined Implementation 4
2.1 An Overview 4
2.2 Dealing With Hazards 5
2.3 Code Excerpts 6
3 Thoughts on the Multicore Implementation 11
4 Revised Schedule 13

Note: This document assumes the reader has seen the initial document.
This can be found here: http://sucs.org/ talyn256/init.pdf

1 Progress Update

When I first began this project in October 2006, I planned to produce 4 micro-
processor specifications - a pipelined implementation, a multicore implementa-
tion, a superscalar implementation and a multithreaded implementation. This,
naturally, lead to four milestones. The first of these, the pipelined microproces-
sor, I had intended to complete before January.

Currently, the project is behind schedule. The pipelined implementation is
almost finished, several weeks later than I intended, therefore the second of my
milestones, the multicore implementation, has slipped behind. Writing all four
specifications, as ambitiously proposed in October, is probably not feasible in
the given time. I am, therefore, going to focus on the pipelined and multicore
implementations and attempt work on the superscalar and multithreaded im-
plementations if there is time.

The pipelined implementation has proven complex in subtle ways which I had
not previously considered. My initial design decisions have proven to be some-
what naive and it was only when I engaged in writing the specification that my
oversights became clear. I will go into detail of the pipelined specification in
the next section and discuss how it works now in contrast to how I imagined it
would at the beginning of the project. The subtle differences were largely due
to organisation of module substructure and the decision of which components to
model and which to leave out. A bitwise specification of every single logic gate
would be rather too low a level of abstraction to be practical, yet too high a
level makes designing the inner workings and interactions of the functional units
rather difficult. Finding the proper level of abstraction has definitely proven to
be the greatest challenge so far.

My output parsing program has reached a basic prototype stage in Java but,
since it is a simple utility, it can (and probably will) be completely rewritten
in Ruby, as considered earlier in the project. This means that the process
of executing a test program on the microprocessor specification occurrs in the
following fashion:

e Maude is invoked from the command line with the location of the specifi-
cation file given as the target.

e Maude performs the reductions specified at the end of the model and
reports the state of the machine at each time interval.

e This output is piped into the parsing program, along with a flag denoting
which of the specifications is being executed®.

e The parsing program determines the state of components at given times by
pattern matching. It converts bitstreams to integer values and produces a
simple output in a form similar to the following: Time 1: Program counter

= 9884, Memory(1) = 32,...

11t would be more elegant to produce a parsing program which could deal with any speci-
fication output without meta info. However, this is sufficiently complex to make doing so an
unnecessary effort. It is much quicker to define the parsing rules statically.

e This data can then be piped into a file, saved, and examined to see if the
predicted behaviour matched the actual behaviour.

2 The Pipelined Implementation

2.1 An Overview

As mentioned in the previous section, finding the proper level of abstraction
has been the largest challenge in the writing of the specification. My initial
ideas were rather rooted in a procedural approach to programming, therefore
producing a working specification required me to re-think many of my earlier
plans. Writing the specification involved, essentially, a refactoring of the original
programmer’s view model. The binary arithmetic, machine word, memory and
register modules were all reusable with the largest changes being made in the
“main” method. This involved separating out the execution logic into a module
representing the Execution Unit.

Care was required to have each functional unit capable of “seeing” the com-
ponents it needed, such as the program counter, memory and registers. Also,
the instruction set was placed into its own module as a move to further enhance
the organisation of the model. Also, several new components have been added
to the basic RISC model in order to facilitate pipelining. These include a Cur-
rent Instruction Register, a Previous Instruction Register and a Stall flag.

The current structural design of the pipelined processor is shown below:

meErmoRY REGISTERS

“TnARIn" rmobpuL e

Binary Module - Rules for basic binary arithmetic operations, such as
addition and multiplication.

Machine Word - Defines the 32-bit word structure and provides a method
for instructions to seperate the operator from its operands.

Memory /Registers - Facilitate depiction of a memory hierarchy by us-
ing arrays of words.

Other Components - This module contains components which the “main”
method and functional units need, such as the program counter, special
registers etc.

Functional Units - Each functional unit here represents a pipeline stage.

Fetch gets the next instruction indicated by the program counter and
places it in the current instruction register.

FExecute carries out the instruction found in the current instruction
register.

Writeback writes the results of the instruction to the target registers.
“Main Method” - This is where the functional units and components

are coordinated by a retiming function which correlates the states of each
functional unit at a given time.

2.2 Dealing With Hazards

A hazard, in terms of microprocessor architecture, is defined as a set of circum-
stances which facilitate an action that leads to an incorrect state or a damaging
performance penalty. In a sequential machine, one instruction may not be exe-
cuted until another has finished. This is inefficient but it is non-hazardous. A
pipelined microprocessor, such as this, has several instructions in the processor
simultaneously, each at different stages of execution. This introduces a level of
instruction level parallelism which introduces the possibility of hazards in three
distinct ways:

e Resource Conflicts: Two instructions both require access to the same

component at the same time.

True? Data Dependency: An instruction takes as one if its operands the
result of a previous instruction which has not yet completed.

Branching: A branch instruction sets the program counter to a new ad-
dress which is not the next sequentially. This means a new address must
be calculated, often pending the result of a conditional branch instruction.
Naturally, this causes a performance penalty as the program counter must
be updated to show the next instruction address. Before this is calculated,
the Fetch Unit must be stalled as simply fetching the next sequential in-
struction will result in the wrong instruction being executed.

2There are three generally recognised sorts of data hazard. Read After Write, also known
as True Data Dependency, is the sort we shall concern ourselves with in a pipelined proces-
sor. The others, Write After Read and Write After Write, become problems in superscalar
machines due to the issues arising from out of order execution.

Resource conflicts have no other solution than to stall for a cycle, unless the
particular resource is duplicable. In this simulation, the pipeline is small and
simple, therefore such conflicts aren’t a threat as each stage is mutually exclu-
sive in the resources it will require i.e. The Fetch Unit will only need to access
program memory and the current instruction register; The Execute Unit will
only need to read from the registers; and the Writeback Unit will need to write
to data memory, the program counter and the registers.

This does pose a form of resource conflict with respect to the registers and
this is the Read After Write hazard. Such hazards can be removed by the
compiler, often by placing non-related instructions between the two offending
ones. However, this cannot be relied upon and RAW hazards are generally un-
avoidable. Their dependency is known as a true dependency because the second
instruction is unable to proceed without the result of the first. It’s not a simple
name dependency, but a dependency on the computed value of the instruction.
In such circumstances, there is little choice but to stall the pipeline. The eas-
iest way to implement a safeguard against this hazard in my 3 stage pipeline
is to keep a record of the previous instruction, a Previous Instruction Register.
The result register given in this instruction can be checked against the operand
registers of the current instruction. If a Read After Write hazard is detected,
the fetch unit is stalled by setting a “stall” flag, a simple boolean value which
the Fetch Unit checks before fetching the next instruction. If it is set, the Fetch
Unit unsets it and does nothing for that cycle.

Branching strategies are a vital part of any efficient pipelined processor. A
branch target buffer holds a number of previously computed branch targets
which can be used directly without recalculation. In conditional branches, how-
ever, it isn’t known if a branch will be taken or not. This means a level of
prediction is necessary. A 2-bit branch predictor records whether the last 2
executions of a particular branch were taken or not. This make prediction eas-
ier, since loop conditions often evaluate true many times in sequence. Results
predicted in such a manner must be treated as speculative, however, and recal-
culated if the prediction is later proven wrong. In this simulation, however, it is
easier just to have the Execution Unit manually change the current instruction
register and program counter as soon as it detects that a branch has been taken.
This is known as bypassing or forwarding.

2.3 Code Excerpts

The following Maude code demonstrates key sections of the preliminary pipelined
implementation.

*okk

**x* Instruction definitions

*okk

fmod INSTRUCTION-SET is
protecting MACHINE-WORD .

ops ADD MULT AND OR NOT : -> OpField .
ops SLL LD ST EQ GT JMP NOP : -> OpField .

% define the opcodes

eq ADD =00000000O0.
eq MULT 00000010 .
eq AND =00000011.
eq OR =00000100.
eq NOT =00000101.
eq SLL =00000110.
eq LD =00000111.
eq ST =00001000.
eq EQ =00001001.
eq GT =00001010.
eq JMP =00001011.
eq NOP =0000000O01.
eq NOPWORD =0 0000001

00000O0O0O

00000O0O0O

00000O0O0O0.

endfm

*okok
***x State of PMP, together with tupling and projection functions
Hokok
fmod PIPELINE-STATE is

protecting MEM .

protecting REG .

sort Pstate .

**x* Tuple representing the microprocessor state:
*okk

*** — Program memory

***x - Data memory

*xx — PC

% - Current Instruction Register

*** — Previous Instruction Register

*xx — Register values

*x*x — Stall Flag

op (_y_s_y_s_5s_,_) : Mem Mem Word Word Word Reg Bool -> Pstate .

*** project out program and data mem
ops mp_ md_ : Pstate -> Mem .

*** project out PC, CIR and PIR
op pc_ cir_ pir_ : Pstate -> Word .

*** project out regs
op reg_ : Pstate -> Reg .

*** project out stall
op stall_ : Pstate -> Bool .

var S : Pstate .

vars MP MD : Mem .

vars PC CIR PIR: Word .
var REG : Reg .

var STALL : Bool .

*** tuple member accessor functions

eq mp(MP,MD,PC,CIR,PIR,REG,STALL) = MP .
eq md (MP,MD,PC,CIR,PIR,REG,STALL) = MD .
eq pc(MP,MD,PC,CIR,PIR,REG,STALL) = PC

eq cir(MP,MD,PC,CIR,PIR,REG,STALL) = CIR .
eq pir(MP,MD,PC,CIR,PIR,REG,STALL) = PIR .
eq reg(MP,MD,PC,CIR,PIR,REG,STALL) = REG .
eq stall(MP,MD,PC,CIR,PIR,REG,STALL) = STALL .

op Four : -> Word .
op pmp : Int Pstate -> Pstate .
op next : Pstate -> Pstate .

var S : Pstate .

var T : Int

var MP MD : Mem .

vars PC CIR PIR A : Word .
var REG : Reg .

var 0 P : OpField .

var STALL : Bool .

x Fix the zero register to always = 0
eq REG[0O 0 0 0 0 0 0 0] = constzero32 .
ceq REG[A / 0][0] = constzero32 if 0 == constzero8 .
eq REG[A / 0][P] = REG[P] [owise].
eq STALL = false .

endfm

KoKk
**%*x Fetch Unit State with projection

KoKk
fmod FETCH-UNIT-STATE is
protecting MACHINE-WORD .

sort FeState .
op () : Word -> FeState
var INSTRUCTION : Word .

% project out instructions
op instruction_ : FeState -> Word .
endfm

k k%

***%x Fetch Unit
ok

*** Fetches the next instruction from program memory.
*okk

fmod FETCH-UNIT is
protecting FETCH-UNIT-STATE .
protecting PIPELINE-STATE .
protecting INSTRUCTION-SET .

op feu : Int FeState -> FeState .
op fenext : FeState -> FeState

var feS : FeState . ***x state
var feT : Int . **xk time

*** jterated map
eq feu(0,feS) = feS .
eq feu(feT,feS) = fenext(feu(feT - 1,feS)) [owisel

ceq fenext (INSTRUCTION) = MP[PC] if STALL(MP[PC]) == false
eq fenext (INSTRUCTION) = NOPWORD .

endfm
XKk

**x Execution Unit State with projection
*kok

fmod EXECUTION-UNIT-STATE is
protecting MACHINE-WORD .

sort ExState .

op () : Word -> ExState

var RESULT : Word .

*** project out results
op result_ : ExState -> Word .

endfm

Kok ok

**x* Execution Unit

*okok

**x Executes the current instruction.

*okok

fmod EXECUTION-UNIT is
protecting EXECUTION-UNIT-STATE .
protecting PIPELINE-STATE .
protecting INSTRUCTION-SET .

op exu : Int ExState -> ExState .
op exnext : ExState -> ExState

var exS : ExState . ***x state
var exT : Int . **%k time

***x iterated map
eq exu(0,exS) = exS .
eq exu(exT,exS) = exnext(exu(exT - 1,exS)) [owise]

x define instructions

*x*x ADD (opcode = 0)
ceq exnext(RESULT) = (REG[rega(currentInstruction)]
+ REG[regb(currentInstruction)])
if opcode(currentInstruction) == ADD .
x** MULT (opcode = 10)
ceq exnext(RESULT) = (REG[rega(currentInstruction)]
* REG[regb(currentInstruction)])
if opcode(currentInstruction) == MULT .
*x** AND (opcode = 11)
ceq exnext(RESULT) = (REG[rega(currentInstruction)]
& REG[regb(currentInstruction)])
if opcode(currentInstruction) == AND .
*x** OR (opcode = 100)
ceq exnext(RESULT) = (REG[rega(currentInstruction)] |
REG [regb(currentInstruction)])
if opcode(currentInstruction) == OR .
*x*x NOT (opcode = 101)
ceq exnext(RESULT) = (!(REG[rega(currentInstruction)]))
if opcode(currentInstruction) == NOT .
*x*x* SLL (opcode = 110)

10

ceq exnext(RESULT) = (REG[rega(currentInstruction)]
<< REG[regb(currentInstruction)])
if opcode(currentInstruction) == SLL .
*x**x LD (opcode = 111)
ceq exnext(RESULT) = (REG[rega(currentInstruction)]
+ REG[regb(currentInstruction)])
if opcode(currentInstruction) == LD .
xx* ST (opcode = 1000)
ceq exnext(RESULT) = (REG[rega(currentInstruction)]
+ REG[regb(currentInstruction)])
if opcode(currentInstruction) == ST .
xx*x EQ (opcode = 1001) [RA == RB]
ceq exnext(RESULT) = (REG[constzero32])
if opcode(currentInstruction) == EQ
and REG[rega(currentInstruction)] == REG[regb(currentInstruction)]
x+% EQ (opcode = 1001) [RA =/= RB]
ceq exnext(RESULT) = (REG[constminusl])
if opcode(currentInstruction) == EQ
and REG[rega(currentInstruction)] =/= REG[regb(currentInstruction)]
*x**x GT (opcode = 1010) [RA > RB]
ceq exnext(RESULT) = (REG[constzero32])
if opcode(currentInstruction) == GT
and REG[rega(currentInstruction)] gt REG[regb(currentInstruction)]
xx* GT (opcode = 1010) [RA <= RB]
ceq exnext(RESULT) = (REG[constminus1])
if opcode(currentInstruction) == GT
and not (REG[rega(currentInstruction)] gt REG[regb(currentInstruction)])
x**x JMP (opcode = 1011) [branch not taken]
ceq exnext(RESULT) = (REG[constminusl])
if opcode(currentInstruction) == JMP
and REG[rega(currentInstruction)] =/= REG[constzero8]
x**x JMP (opcode = 1011) [branch taken]
ceq exnext(RESULT) = (REG[constzero32])
if opcode(currentInstruction) == JMP
and REG[rega(currentInstruction)] == REG[constzero8]

endfm

3 Thoughts on the Multicore Implementation

Having written the pipelined specification, I feel to have gleaned several valuable
insights with respect to modelling processors algebraically. I feel this experi-
ence will help me write the multi-core specification with far fewer problems. I
envisage the model will build upon the pipelined model by encapsulating two of
the old “main” methods within a new “main” method. This new module will
deal with retimings, as the old modules did, as well as a basic notion of process
scheduling. This is, technically, a task for the operating system. However, it’s
necessary to model this type of input in order to achieve a more realistic model.
As such, this will require a re-write of the test program to encompass multiple

11

processes or, more simply, a second test program which the operating system
process scheduler can dispatch to the second of the cores.

In addition to these changes, it will be necessary to reconsider the memory
hierarchy by altering the architecture to encorporate the idea of caches. This,
potentially, makes things rather more complex. However, multicore processors
do share caches at some level, therefore it is necessary to accommodate this by
definition.

12

4 Revised Schedule

14th February

Begin the dissertation write-up

Start writing the Ruby output parser

21st February
Finish the multicore implementation
Finish the Ruby parser

Begin the superscalar implementation

21st March

Finish the superscalar implementation

Begin the multithreaded implementation

21st April
Finish the multithreaded implementation

Finish the dissertation write-up

Early May

Demonstration and Viva

13

