
The Algebraic Specification of
Multi-core and Multi-threaded

Microprocessors
Sean Handley

May 2007

Abstract

In addition to decreasing latency by increasing clock speeds, mod-
ern microprocessor architects improve efficiency by employing techniques
such as pipelining, multiple cores and multiple threads of execution in
order to achieve superior throughput. Such processors can be modelled
axiomatically using an algebraic specification language and a reductive
term-rewriting system, such as Maude. In this project, I seek to create
such models at varying levels of complexity. I begin with a programmer’s
view of the machine and proceed to develop pipelined and multi-core mod-
els.

Project Dissertation submitted to the University of Wales, Swansea
in Partial Fulfilment for the Degree of Bachelor of Science

Department of Computer Science
University of Wales Swansea

Declaration

This work has not previously been accepted in substance for any degree and is
not being currently submitted for any degree.

May 10, 2007

Signed:

Statement 1

This dissertation is being submitted in partial fulfilment of the requirements for
the degree of a BSc in Computer Science.

May 10, 2007

Signed:

Statement 2

This dissertation is the result of my own independent work/investigation, except
where otherwise stated. Other sources are specifically acknowledged by clear
cross referencing to author, work, and pages using the bibliography/references.
I understand that failure to do this amounts to plagiarism and will be considered
grounds for failure of this dissertation and the degree examination as a whole.

May 10, 2007

Signed:

Statement 3

I hereby give consent for my dissertation to be available for photocopying and
for inter-library loan, and for the title and summary to be made available to
outside organisations.

May 10, 2007

Signed:

This page is intentionally left blank.

3

Contents

1 Introduction 5

2 Background and Preliminaries 5
2.1 Modern Microprocessors . 5

2.1.1 Architecture Principles and Wisdom 5
2.1.2 Latency and Throughput 6
2.1.3 RISC vs CISC . 6
2.1.4 Parallelism . 7
2.1.5 Pipelining . 7
2.1.6 Superscalar . 7
2.1.7 Multi-core . 8
2.1.8 Multi-threading . 8

2.2 Algebraic Specification . 9
2.2.1 Clocks . 9
2.2.2 Streams . 10
2.2.3 Iterated Maps . 10
2.2.4 Decomposition . 10
2.2.5 Comparing Iterated Maps 11
2.2.6 Retimings . 11

2.3 Maude . 11
2.4 Relevant Literature . 12

3 Specifying Basic Microprocessors 14
3.1 The binary number system . 14
3.2 Machine Words and Instruction Formats 15
3.3 Memory and Registers . 16
3.4 Instruction sets . 17
3.5 Modelling Progress With Streams and an Iterated Map 17
3.6 Running Test Programs . 18

4 Specifying Complex Microprocessors 21
4.1 Pipelined Processors . 21

4.1.1 Pipeline Hazards . 21
4.1.2 Abstract Model . 23
4.1.3 Coordinating The Functional Units 25

4.2 Multi-core Processors . 32
4.2.1 Consistency Issues . 32
4.2.2 Coordinating The Two Cores 32

5 Thoughts and Conclusions 34

A Case Studies 36
A.1 The MIPS Processor . 36

B Source Code 37

4

1 Introduction

In addition to decreasing latency by increasing clock speeds, modern micropro-
cessor architects improve efficiency by employing techniques such as pipelining,
multiple cores and multiple threads of execution in order to achieve superior
throughput. Such processors can be modelled axiomatically using an algebraic
specification language and a reductive term-rewriting system, such as Maude.

In this project, it is my goal to use discrete mathematics in order to create alge-
braic models of microprocessors at varying levels of complexity. These models
will then be used as templates for specification modules in Maude. Originally, I
intended to produce pipelined, superscalar, multi-core and multi-threaded mod-
els. However, over time this proved too ambitious and I decided to focus on pro-
ducing a simple programmer’s view of the machine, a pipelined implementation
and a multi-core model.

2 Background and Preliminaries

2.1 Modern Microprocessors

Since the first half of the 20th century, computer architecture has made many
advances. Rather than a simple Von Neumann machine, running a single pro-
gram sequentially until termination, machines of today encorporate many design
tricks to speed up the process. Pipelining allows each stage of the fetch-decode-
execute cycle to occur simultaneously - as one instruction is executed, the next
is decoded etc. Multiple CPU cores and multithreading opens further avenues
of parallelism which help to maximise throughput.[1]

2.1.1 Architecture Principles and Wisdom

Throughout the relatively short history of computer architecture, many impor-
tant properties of systems have been observed. It is clear that, if a machine
performs a certain type of operation more often than any other, it should be
more heavily optimised. The common cases should be fast, and the uncommon
cases should be correct.

Gene Amdahl formulated a specific law to model optimisation of a computer
system. Amdahl’s law can be summarised with the following formula:

1∑n

k=0
(

Pk
Sk

)

where Pk is a percentage of the instructions which can be made faster/slower, Sk

is a multiplier representing the speed change (where 1 = no change), k is a label
for percentage and speedup, and n is the number of resulting increases/decreases
in speed.

This sets the scene for improving the speed of CPU architecture as it shows
that, as parts of a system are optimised, they will eventually be dominated by
other suboptimal parts. This idea becomes increasingly important as parallelism
is exploited in pipelined and multi-core systems.

5

2.1.2 Latency and Throughput

There are, typically, two methods to improve the efficiency of a system: decrease
the system’s latency, or increase the system’s throughput. In processor design,
this translates to clock speeds and the system’s capacity for parallelism. Over
time, clock speeds have increased substantially, decreasing the time it takes
for a machine to execute a single instruction. Parallelism increases throughput
because it allows multiple tasks to be executed simultaneously. Parallelism will
be discussed in more depth later.

2.1.3 RISC vs CISC

RISC (Reduced Instruction Set Computer) is a design philosophy for micropro-
cessors which was pioneered as a result of several emerging pressures on chip
designers.

In the 1950s and 1960s, the majority of computer programs were written using
machine code or assembler. This meant that instruction set designs were rela-
tively complex, so as to make programmers’ lives easier i.e. instructions which
read in the values, calculated a result and stored them back in a single instruc-
tion. There were often several addressing modes and many systems had native
support for polynomial and complex number data types. Such machines were
later named CISCs (Complex Instruction Set Compters) in antithesis to their
RISC counterparts.

Through the 1970s and 1980s, the use of compilers for high level languages
became increasingly popular due to the advantages high level programming
gave to the software community. Brevity and readability of programs meant
increased productivity and easier debugging. However, a study into compiler
generated machine code revealed that the compilers were ignoring many of the
more complex instructions in favour of the smaller, simpler instructions. These
instructions were being used in combination to achieve the same effect as the
larger instructions and, in many cases, they would execute faster, too.

Another factor against CISC was the disparity between CPU speeds and mem-
ory speeds. It was becoming increasingly clear that the former were going to
increase at a far higher rate than the latter. As a result, a machine’s overall
speed was to be limited by slow memory and so architectures had to be re-
designed so as to minimise memory accesses. This led to the necessity of CPU
caches and an increased set of registers.

From these needs, the RISC movement emerged. RISC instructions were small
with uniform execution times and single addressing modes. Also, RISC ma-
chines used a concept known as load-store whereby values needed for operations
were loaded from memory into the CPU registers, operated on directly whilst
there, and then written back to memory later. Usually, only integer (and per-
haps floating point) data types were supported and the instruction sets were
small, clean and orthogonal. This allowed for the development of pipelining
which will be discussed shortly.

6

2.1.4 Parallelism

Typically, when discussing parallelism in a system, we talk about Instruction
Level Parallelism (ILP) and Thread Level Parallelism (TLP). The former in-
volves having multiple instructions at different stages of execution at a given
time. A pipelined processor is one which exploits ILP. The latter is where two in-
dependant instruction streams (known as threads) are executed simultaneously.
The two methods of exploiting TLP which I will be discussing are multiple CPU
cores and multi-threading.

2.1.5 Pipelining

Pipelining is an idea which has been around since the first half of the twentieth
century. In a simple, non-pipelined system, instructions are processed in a
sequential series where each section of the cycle must complete before another
begins i.e. Fetch, Decode, Execute, Fetch, Decode, Execute,... A pipelined
processor takes advantage of instruction-level parallelism and overlaps each stage
as shown below.

KEY: IF=Instruction Fetch, ID=Instruction Decode, EX=Execute, MEM=Memory
Access, WB=Write Back to registers[14]

This introduces many new hazards1. i.e. If a dependency exists between two
instructions,

Add the value of R1 to the value of R2 and store the result in R3
Subtract the value of R4 from R3 and store the result in R5

The first instruction must be allowed to complete its execution before the second,
since the second depends on the result of the first. Similar issues occur with
branching instructions, where the result of a branch condition is not known.
There exist many sophisticated branch-predicting strategies, but for the pur-
poses of this project, I shall simply assume that all branches are taken.

2.1.6 Superscalar

A superscalar processor is one which makes use of multiple pipelines in order
to achieve superior throughput. In practice, this is achieved by duplication
of several hardware components. As with pipelining, the use of superscalar
processing introduces a number of complications.

1To borrow a term from electronics.

7

2.1.7 Multi-core

A multi-core microprocessor contains multiple processor cores which share some
components, such as level two caches and the bus interface.

2.1.8 Multi-threading

Simultaneous Multi-Threaded microprocessors are single processors which be-
have as if they were multiple processors. An operating system will have access
to these virtual processors and allocate tasks to them in parallel. In practice,
this means that duplicated hardware introduced to aid superscalar processing is
used when idle to run multiple threads of execution. Since threads are, mostly,
independent of one another, this is relatively straightforward.

8

2.2 Algebraic Specification

Specifying a system in terms of an algebra is an elegant way to describe it.
Using interfaces and axioms, rather than a series of imperative procedures, one
achieves a mathematically sound representation, allowing for verification and
proof of correctness. A system that can be verified is one which can be relied
upon to perform its tasks predictably and safely. This is good news for manu-
facturers of aeroplanes, nuclear power plants and hospital equipment.

Both software and hardware may be modelled using an algebraic specification.
In the case of this project, a working model of a microprocessor2 may be con-
structed at any level of abstraction without actually making the machine itself,
allowing easier exploration of concepts and ideas.

Dr. Harman and Prof. Tucker have produced several papers[2][3][6][7] which
outline ways to use algebra to represent microprocessors.

2.2.1 Clocks

A clock is an algebra (T |0, t + 1) where T = {0, 1, ...}. Beginning at zero and
using t+1 to refer to further clock cycles, time can be represented as a set of

2Albeit, one of a much higher level of abstraction than a realistic model of electronic
components.

9

explicit, synchronous, discrete values where each clock cycle denotes an interval
of time and time is defined by the occurence of events3.

2.2.2 Streams

A stream, s ∈ [T → A], is a function from a clock T to a set A of data items.
This gives us a formal representation of time-separated items.

s ∈ [T → A] is a stream.
t ∈ T is a clock cycle.
s(t) represents the data item on the stream at time t.

2.2.3 Iterated Maps

A microprocessor’s behaviour can be described using an iterated mapping func-
tion:

F : T ×A→ A

which iterates as follows:

for t ∈ T , a ∈ A
F (0, a) = a
F (t+ 1, a) = f(F (t, a))

Therefore F (t, a) = f t(a)

This gives the following state-trace:

a, f(a), f2(a), ..., f t(a), ...

2.2.4 Decomposition

The iterated map function may be re-written to illustrate the dependencies be-
tween components in a system:

F1(0, a1, ..., an = a1,

(...)

Fn(0, a1, ..., an = an,

F1(t+ 1, a1, ..., an) = f1(F1(t, a1, ..., an), ..., Fn(t, a1, ..., an)),

(...)

Fn(t+ 1, a1, ..., an) = fn(F1(T, a1, ..., an), ..., Fn(t, a1, ..., an)).

3This is an important concept. Time is not an external factor, independent of the micro-
processor model. An interval is more usefully defined by the occurence of an event which is
considered interesting. In this case, we will define such an event as a change of state.

10

2.2.5 Comparing Iterated Maps

Iterated maps may be compared using the following commutative diagram:

T ×A
F−→ Ax(λ, ψ)

xψ
S ×B

G−→ B

2.2.6 Retimings

A microprocessor specification may contain multiple clocks of different speeds
and, also, clocks may be irregular. Because of this, it is necessary to develop
methods of mapping clocks to each other. This is know as a retiming function.
A retiming λ : T → R is a surjective, monotonic map between a clock T and
a clock R. The set of retimings from T to R is denoted with Ret(T,R). The
concept is illustrated visually below.

Every cycle of clock R corresponds with the same number k ∈ N+ cycles of
clock T . Clock T runs at exactly k times the rate of clock R, and λ(t) = bt/kc.
We say such retimings are linear of length k.

For each retiming λ there is a corresponding immersion λ̄ : R→ T ,

λ̄(r) = (µt ∈ T)[λ(t) = r].

2.3 Maude

Maude is a specification language which allows a system to be modelled algebraically[11].
By reductive term re-writing, a module comprised of sorts, interfaces and axioms
can be ”executed” to produce an output. Modules are put together in such a
way:

fmod BASIC-NAT is
sort Nat .

op 0 : -> Nat .
op s : Nat -> Nat .
op + : Nat Nat -> Nat .

11

vars N M : Nat .
eq 0 + N = N . *** Axiom 1
eq s(M) + N = s(M + N) . *** Axiom 2

endfm

This module presents a simple number system, represented by the constant
0 and the successor operation which gives us the next number. If we wish to
perform a simple addition using this system (e.g. 2 + 3), we give Maude the
reduce command.

reduce s(s(0)) + s(s(s(0))) .

Maude responds with:

rewrites: 3 in 0ms cpu (0ms real) (rewrites/second)
result Nat: s(s(s(s(s(0)))))

Maude used the two addition axioms to re-write the terms:

s(s(0)) + s(s(s(0))) = s(0) + s(s(s(s(0)))) [Axiom 2]
s(0) + s(s(s(s(0)))) = 0 + s(s(s(s(s(0))))) [Axiom 2]
0 + s(s(s(s(s(0))))) = s(s(s(s(s(0))))) [Axiom 1]

2.4 Relevant Literature

• “Computer Architecture: A Quantitative Approach”, Third Edition by
John L. Hennessy, David A. Patterson. A classic text in the field of com-
puter architecture, H&P covers a wide variety of topics in great depth.
General architectural concepts such as instruction sets, pipelining, branch
prediction, superscalar processors and instruction level parallelism are
documented thoroughly. However, the book does not seem to contain a
great deal of information regarding multi-threading, therefore alternative
sources of information on this topic must be sought.

• “Algebraic Models of Microprocessors: Architecture and Organisation” by
N. A. Harman and J. V. Tucker, Acta Informatica 33 (1996). This is
an early paper on the topic of modelling microprocessors algebraically. It
contains a lengthy section of algebraic ”tools” which will form the basis
of my models.

• “Correctness and Verication of Hardware Systems Using Maude” by N. A.
Harman, Swansea University. This paper discusses representing hardware
systems algebraically using Maude, making it a useful link between the
algebraic theory and creating Maude modules which put the theory into
practice.

• “High Performance Microprocessors” by N.A. Harman and A. Gimblett,
Swansea University, 2006. These are the course notes for the high per-
formance microprocessors course, as taught at Swansea University. They

12

discuss a broad selection of topics in the field, providing the reader with
a firm grounding in computer architecture.

• “System Specification” by N. A. Harman and M. Seisenberger, Swansea
University, 2006. These are the course notes for the system specification
course, as taught at Swansea University. They discuss the specification of
software and hardware using the algebraic specification language, Maude.
As well as providing a background for specification in general, they de-
scribe algebras, sorts, axioms and other relevant topics and proceed to
outline useful examples of microprocessor specification. The coursework
submitted for this module last year will provide a basis for the initial
programmer’s model.

• “Algebraic Models of Simultaneous Multi-Threaded and Multi-Core Micro-
processors” by N.A. Harman, Swansea University, 2006. Highly relevant
material concerning details of how multi-core and multi-threaded proces-
sor function and how this functionality is modelled algebraically.

• “Algebraic Models of Computers” by N.A. Harman, Swansea University,
2006. Neal Harman’s partially completed book on the field. It covers all
related topics in detail.

• A selection of papers published on Intel.com. The world leading Intel
Corporation publishes a helpful selection of white papers and demonstra-
tions on their public FTP server. These cover some general topics, such
as multi-cores and multi-threading, to a moderate level of detail and of-
ten include animated demonstrations to aid understanding of potentially
complex interactions. Other papers chronicle individual architectures and
innovations for which Intel is directly responsible, such as NetBurst and
the Core Duo. The papers used will be included on the project’s accom-
panying CD-ROM.

13

3 Specifying Basic Microprocessors

Before producing implementations which use parallelism, I shall discuss how a
simple, sequential processor can be modelled which matches the programmer’s
perspective i.e. each instruction completes before the next is executed, therefore
data dependencies do not interfere with results.

3.1 The binary number system

The heart of the microprocessor logic in these models is contained within a
module which defines the binary number system and the operations which may
be performed on binary values. Whenever an instruction is executed, it uses
an operation which has been defined here over the natural numbers, as imple-
mented in base two.

Maude provides an ideal mechanism for specifying the binary number system:

sorts Bit Bits .

subsort Bit < Bits .

ops 0 1 : -> Bit .
op __ : Bits Bits -> Bits [assoc prec 1 gather (e E)] .

We begin by defining the sorts Bit and Bits and declaring the former to be
a subsort of the latter. The constants, zero and one, are defined as being of
sort Bit. The operation is a recursive definition of a binary sequence of any
length, defined as some Bits appended to some Bits to give some Bits. Since
a Bit is a subsort of Bits, a sequences is recursively evaluated until each part
is recognised as a separate Bit - either the constant one or the constant zero.
In addition to this, some information describing the behaviour of such a binary
sequence is given in square brackets. Binary sequences are declared to be as-
sociative, evaluated from right-to-left and given order of precedence of 1, the
highest precedence in the system. This means that binary sequences are eval-
uated using the operation before any other operators acting on the sequences4.

Now that a simple, rescursive concept of binary numbers has been established,
axioms which act upon these numbers can be defined. The instruction set for
this simple, RISC model involves only a few logical and mathematical opera-
tors, none of which return any negative numbers. Below, the axioms defining
the logical operators and, or and not are defined.

op _and_ : Bits Bits -> Bits [assoc comm prec 2 gather (E e)] .
op _or_ : Bits Bits -> Bits [assoc comm prec 2 gather (E e)] .
op _sl_ : Bits Bits -> Bits [prec 2 gather (E e)] .

4In Maude, the operator , defined by two underscores, represents the placement of the
function inputs. Infix operators are typically defined by op . Since there is no operation
symbol, the inputs are simply defined as single Bits, separated by spaces i.e. 0 1 0 1 1 0 ...

14

vars S T : Bits .
vars B C : Bit .

eq not (S T) = (not S) (not T) .
eq not 0 = 1 .
eq not 1 = 0 .

eq B and 0 = 0 .
eq B and 1 = B .
eq (S B) and (T C) = (S and T) (B and C) .

eq B or 0 = B .
eq B or 1 = 1 .
eq (S B) or (T C) = (S or T) (B or C) .

3.2 Machine Words and Instruction Formats

In this 32-bit microprocessor model, all instructions have uniform length and
format. A single instruction is exactly one 32-bit word, the first byte defines the
op code5 and the second, third and fourth bytes define operands. The notion of
32-bits being equal to a word and 8 bits being equal to a byte is easily conveyed
using Maude’s built-in mb() operation.

vars B1 B2 B3 B4 B5 B6 B7 B8 : Bit .
vars B9 B10 B11 B12 B13 B14 B15 B16 : Bit .
vars B17 B18 B19 B20 B21 B22 B23 B24 : Bit .
vars B25 B26 B27 B28 B29 B30 B31 B32 : Bit .

mb (B1 B2 B3 B4 B5 B6 B7 B8) : Byte .

mb (B1 B2 B3 B4 B5 B6 B7 B8
B9 B10 B11 B12 B13 B14 B15 B16
B17 B18 B19 B20 B21 B22 B23 B24
B25 B26 B27 B28 B29 B30 B31 B32) : Word .

Now the Maude parser will recognise 32-bit strings as words and 8-bit strings
as bytes. However, for a given 32-bit word, it is necessary to define a set of
functions which extract the op code and the three operands. This requires the
use of a function, bits, which takes a bit sequence and two index values and
returns the subsequence defined by the indices.

op bits : Bits Int Int -> Bits .
op opcode : Word -> OpField .
ops rega regb regc : Word -> OpField .

5A number which statically represents an operation.

15

var S : Bits .
var B : Bit .
vars I J : Int .
var W : Word .

eq bits(S B,0,0) = B .
eq bits(B,J,0) = B .
ceq bits(S B,J,0) = bits(S, J - 1,0) B if J > 0 .
ceq bits(S B,J,I) = bits(S,J - 1,I - 1) if I > 0 and J > 0 .

eq opcode(W) = bits(W,31,24) .
eq rega(W) = bits(W,23,16) .
eq regb(W) = bits(W,15,8) .
eq regc(W) = bits(W,7,0) .

This allows instructions to be stored as 32-bit strings and further acted upon
by the microprocessor. It should be noted that all the mathematical and logical
operations need to be performed both upon bytes (adding register addresses
together, for example) as well as on full words in memory. For this reason,
operations are defined twice - once for bytes, once for words.

3.3 Memory and Registers

Since this is a 32-bit system, the number of addressable memory locations is
232. As registers are addressed using a single byte, this gives 28 general purpose
registers.

Memory and registers are modelled in Maude in exactly the same manner. Since
Maude is not an imperative language, it is not possible to assign a value to a
variable. Since this is precisely what we wish to do with our memory and reg-
isters, it is necessary to represent storage and retrieval in a different manner.

sort Mem .

op _[_] : Mem Word -> Word .
op _[_/_] : Mem Word Word -> Mem .

var M : Mem .

var A B : Word .
var W : Word .

eq M[W / A][A] = W .
eq M[W / A][B] = M[B] [owise] .

The [] operator defines a “read” operation which takes a memory location as
input and returns the value at that location, if one exists. The [/] operator

16

“writes” the given value to the given memory location. Obviously, there is no
actual reading or writing occurring in a traditional programming sense. The
axioms defining the behaviour of the memory read and write in a more math-
ematical sense. Instead of a variable being replaced, new information is just
added to the existing structure. The first axiom states that, if a write has given
W as the value at address A and the contents of A are requested, W is yielded.
The second axiom is marked by [owise]. This is shorthand in Maude for “apply
this axiom if none of the others may be applied”. If B is given as the index, and
no corresponding W value exists, the operation yields M[B], a recursive call to
search other entries. This defines the read behaviour. The write behaviour is
defined constructively within the two read axioms.

3.4 Instruction sets

Instruction sets are defined very simply with a set of constants.

ops ADD32 MULT AND OR NOT : -> OpField .
ops SLL LD32 ST32 EQ GT JMP : -> OpField .

eq ADD = 0 0 0 0 0 0 0 0 .
eq MULT = 0 0 0 0 0 0 1 0 .
eq AND = 0 0 0 0 0 0 1 1 .
eq OR = 0 0 0 0 0 1 0 0 .
eq NOT = 0 0 0 0 0 1 0 1 .
eq SLL = 0 0 0 0 0 1 1 0 .
eq LD = 0 0 0 0 0 1 1 1 .
eq ST = 0 0 0 0 1 0 0 0 .
eq EQ = 0 0 0 0 1 0 0 1 .
eq GT = 0 0 0 0 1 0 1 0 .
eq JMP = 0 0 0 0 1 0 1 1 .

As this is a load-store model, LD and ST are the operations to read from and
write to memory. Also defined are the arithmetic operators, ADD,MULT and
SLL6; the logical operators AND, OR and NOT ; the comparison operators EQ
and GT ; and the branch instruction JMP. For the purposes of simple algebraic
modelling, this instruction set provides a reasonable amount of functionality
without introducing unnecessary complications.

3.5 Modelling Progress With Streams and an Iterated
Map

Iterated maps are used in these models to show change of state of time. These
are modelled in Maude in the following manner.

op spm : Int SPMstate -> SPMstate .
op next : SPMstate -> SPMstate .

6Shift left.

17

var SPM : SPMstate .
var T : Int .

eq spm(0,SPM) = SPM .
eq spm(T,SPM) = next(spm(T - 1,SPM)) [owise] .

The spm operation shows the state of the microprocessor at a given time using
the next-state function. As shown earlier, the algebraic representation for an
iterated map is as follows.

for t ∈ T , a ∈ A
F (0, a) = a
F (t+ 1, a) = f(F (t, a))

Due to the way in which Maude evaluates terms, it is necessary for us to inter-
pret this as

for t ∈ T , a ∈ A
F (0, a) = a
F (t, a) = f(F (t− 1, a))

This gives exactly the same behaviour, as expected, but must be written as
such to account for a subtlety of the language.

The next-state function is then laid out in the form of conditional equations,
each dependant on the opcode of the current instruction being executed.

ceq next(MP,MD,PC,REG) = (MP, MD, PC + Four,
REG[REG[rega(MP[PC])] + REG[regb(MP[PC])] / regc(MP[PC])])
if opcode(MP[PC]) == ADD .

The terms MP, MD, PC, and REG represent program memory, data memory,
program counter and registers. The separation of program memory and data
memory is somewhat artificial, since the Von Neumann architecture of modern
machines uses the stored program concept whereby programs and data occupy
the same memory. However, at a lower level, instructions and data do inhabit
separate caches, therefore the separation isn’t all that unrealistic and can be
justified by the overall simplicity of the memory model and the reduction in
complexity that a division provides.

3.6 Running Test Programs

Test programs are written for the micrprocessor model in a manner similar to
assembler language. Instruction words are carefully written by hand with each
of the four bytes separated by a line and commented to make for easier reading.

18

ops Md Mp : -> Mem .
op Rg : -> Reg .
op Pc : -> Word .

*** Set the PC to zero
eq Pc = 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 .

*** R1 = 1
eq Rg[0 0 0 0 0 0 0 1] =

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 .

*** R2 = 3
eq Rg[0 0 0 0 0 0 1 0] =

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 .

*** INST 1 [Add RG1 and RG2 and store in RG6] -> RG[6] = 4
eq Mp[0 0] =

0 0 0 0 0 0 0 0 *** ADD
0 0 0 0 0 0 0 1 *** RG1
0 0 0 0 0 0 1 0 *** RG2
0 0 0 0 0 1 1 0 . *** RG6

*** INST 2 [Store RG6 in Mem[RG1+RG2]] -> Mem[4] = 4
eq Mp[0 1 0 0] =

0 0 0 0 1 0 0 0 *** STORE
0 0 0 0 0 0 0 1 *** RG1
0 0 0 0 0 0 1 0 *** RG2
0 0 0 0 0 1 1 0 . *** RG6

This section of code adds the contents of registers 1 and 2 and then stores the
result in the address indexed by that result.Once a program has been written in
this style, the state of the microprocessor over time is revealed using Maude’s
reduce command.

reduce spm(1, (Mp,Md,Pc,Rg)) .
reduce spm(2, (Mp,Md,Pc,Rg)) .
.
.
.

19

This gives a state trace in the following format:

result SPMstate: Mp,Md,0 1 0 0,
(Rg[0 1 / 0 0 0 0 0 0 0 1]
[0 1 0 1 / 0 0 0 0 0 0 1 0]
[0 1 0 0 / 0 0 0 0 0 1 1 0])
result SPMstate: Mp,
Md[0 1 0 0 /
0 1 0 0],
0 1 0 0 0,
(Rg[0 1 / 0 0 0 0 0 0 0 1]
[0 1 0 1 / 0 0 0 0 0 0 1 0]
[0 1 0 0 / 0 0 0 0 0 1 1 0])

20

4 Specifying Complex Microprocessors

Specifying microprocessors which take advantage of instruction-level parallelism
and thread-level parallelism requires a different approach to the simple, sequen-
tial models. This involves the use of mutiple iterated maps and functions which
coordinate them.

4.1 Pipelined Processors

The pipelined implementation uses three iterated maps (one for each of the
functional units), all of which are coordinated by a “main” iterated map. An
overview of the module structure is given below.

4.1.1 Pipeline Hazards

A hazard, in terms of microprocessor architecture, is defined as a set of circum-
stances which facilitate an action that leads to an incorrect state or a damaging
performance penalty. In a sequential machine, one instruction may not be exe-
cuted until another has finished. This is inefficient but it is non-hazardous. A
pipelined microprocessor, such as this, has several instructions in the processor
simultaneously, each at different stages of execution. This introduces a level of
instruction level parallelism which introduces the possibility of hazards in three
distinct ways:

21

• Resource Conflicts: Two instructions both require access to the same
component at the same time.

• True7 Data Dependency : An instruction takes as one if its operands the
result of a previous instruction which has not yet completed.

• Branching : A branch instruction sets the program counter to a new ad-
dress which is not the next sequentially. This means a new address must
be calculated, often pending the result of a conditional branch instruction.
Naturally, this causes a performance penalty as the program counter must
be updated to show the next instruction address. Before this is calculated,
the Fetch Unit must be stalled as simply fetching the next sequential in-
struction will result in the wrong instruction being executed.

Resource conflicts have no other solution than to stall for a cycle, unless the
particular resource is duplicable. In this simulation, the pipeline is small and
simple, therefore such conflicts aren’t a threat as each stage is mutually exclu-
sive in the resources it will require i.e. The Fetch Unit will only need to access
program memory and the current instruction register; The Execute Unit will
only need to read from the registers; and the Writeback Unit will need to write
to data memory, the program counter and the registers.

This does pose a form of resource conflict with respect to the registers and
this is the Read After Write hazard. Such hazards can be removed by the
compiler, often by placing non-related instructions between the two offending
ones. However, this cannot be relied upon and RAW hazards are generally un-
avoidable. Their dependency is known as a true dependency because the second
instruction is unable to proceed without the result of the first. It’s not a simple
name dependency, but a dependency on the computed value of the instruction.
In such circumstances, there is little choice but to stall the pipeline. The eas-
iest way to implement a safeguard against this hazard in my 3 stage pipeline
is to keep a record of the previous instruction, a Previous Instruction Register.
The result register given in this instruction can be checked against the operand
registers of the current instruction. If a Read After Write hazard is detected,
the fetch unit is stalled by setting a “stall” flag, a simple boolean value which
the Fetch Unit checks before fetching the next instruction. If it is set, the Fetch
Unit unsets it and does nothing for that cycle.

Branching strategies are a vital part of any efficient pipelined processor. A
branch target buffer holds a number of previously computed branch targets
which can be used directly without recalculation. In conditional branches, how-
ever, it isn’t known if a branch will be taken or not. This means a level of
prediction is necessary. A 2-bit branch predictor records whether the last 2
executions of a particular branch were taken or not. This make prediction eas-
ier, since loop conditions often evaluate true many times in sequence. Results
predicted in such a manner must be treated as speculative, however, and recal-
culated if the prediction is later proven wrong. In this simulation, however, it is

7There are three generally recognised sorts of data hazard. Read After Write, also known
as True Data Dependency, is the sort we shall concern ourselves with in a pipelined proces-
sor. The others, Write After Read and Write After Write, become problems in superscalar
machines due to the issues arising from out of order execution.

22

easier just to have the Execution Unit manually change the current instruction
register and program counter as soon as it detects that a branch has been taken.
This is known as bypassing or forwarding.

In this implementation, we assume a MIPS style pipeline (See Appendix) i.e.
one without interlocks, therefore resolution of data dependencies is given over
to the compiler and all incoming code should (hopefully) be free of data depen-
dencies.

4.1.2 Abstract Model

Here is a diagramatic representation of the pipeline implementation.

23

24

4.1.3 Coordinating The Functional Units

Coordinating the functional units is a rather delicate process. The structure of
the specification must allow each functional unit to “see” the others in order
to acquire the necessary state information to carry out its assigned tasks. The

25

relationship of the functional units is as follows.

• Fetch Unit: Needs access to the execute unit in order to detect branches
and update the program counter accordingly.

• Execute Unit: Needs access to the fetch unit in order to retrieve the
current instruction. Also needs access to the writeback unit to retrieve
operands because the writeback unit coordinates access to the memory
and registers.

• Writeback Unit: Needs access to the execute unit in order to determine
whether the current result needs to be stored and, if so, where.

This leads to the following natural placement of system components:

• Fetch Unit: Contains the Program Memory, the Program Counter, The
Current Instruction Register and the Previous Instruction Register.

• Execute Unit: Contains the Result; a Branch Taken flag; a Writeback
flag specifying register-writeback, memory writeback or neither; a memory
location for writeback if needed; a register location for writeback if needed.

• Writeback Unit: Contains the Data Memory and the Registers.

With regard to data processing, each unit operates thusly:

• Fetch Unit: Checks whether execution has branched and updates the
program counter and current instruction register accordingly.

• Execute Unit: Gets the needed operands, computes the result of the
instruction and sets flags for the writeback unit.

• Writeback Unit: Gets the result from the execution unit and writes it
back to storage accordingly.

In terms of algebra8, a functional unit is organised in the following manner:

FState = PM × PC × CIR× PIR

F : T × FState × EState ×WState → FState

fnext : FState × EState ×WState → FState

F (0, f, e, w) = f
F (t+ 1, f, e, w) = fnext(F (t, f, e, w), E(t, f, e, w),W (t, f, e, w))

fnext(PM,PC,CIR, PIR) = ...

This structure allows each functional unit to access the data it needs at each
stage. Here are the relevant Maude implementations with comments:

8No pun intended.

26

*** Functional Units

*** The functional units have all been moved into one module to resolve
*** issues with visibility

fmod FUNCTIONAL-UNITS is

protecting MEM .
protecting REG .
protecting INSTRUCTION-SET .

sort FeState .
sort ExState .
sort WbState .

*** FETCH OPS

*** Program Memory, Program Counter,
*** Current Instruction Register, Previous Instruction Register
op (_,_,_,_) : Mem Word Word Word -> FeState .

op pm_ : FeState -> Mem .
ops pc_ cir_ pir_ : FeState -> Word .

op feu : Int FeState ExState WbState -> FeState .

op fenext : FeState ExState WbState -> FeState .

*** EXECUTE OPS

*** Result, Taken Flag, WBFlag, MemWBLoc, RegWBLoc
op (_,_,_,_,_) : Word Bool Int Word OpField -> ExState .

op exu : Int FeState ExState WbState -> ExState .

op exnext : FeState ExState WbState -> ExState .

ops result_ memwbloc_ : ExState -> Word .
op taken_ : ExState -> Bool .
op wbflag_ : ExState -> Int .
op regwbloc : ExState -> OpField .

*** WRITEBACK OPS

*** Data Memory, Registers
op (_,_) : Mem Reg -> WbState .

op dm_ : WbState -> Mem .
op reg_ : WbState -> Reg .

27

op wbu : Int FeState ExState WbState -> WbState .

op wbnext : FeState ExState WbState -> WbState .

*** FETCH VARIABLES

var PM : Mem .
var PC PIR CIR : Word .

var feS : FeState . *** state
var T : Int . *** time

*** Only one time variable is needed since all units should remain
*** in step due to the lack of interlocking and stalling

*** EXECUTE VARIABLES

var TAKEN : Bool .
var WBFLAG : Int . *** 0 = no writeback, 1 = mem, 2 = reg
var RESULT MEMWBLOC : Word .
var REGWBLOC : OpField .

var exS : ExState . *** state

*** WRITEBACK VARIABLES

var wbS : WbState . *** state
var DM : Mem .
var REG : Reg .

*** FETCH EQUATIONS

eq pm(PM,PC,CIR,PIR) = PM .
eq pc(PM,PC,CIR,PIR) = PC .
eq cir(PM,PC,CIR,PIR) = CIR .
eq pir(PM,PC,CIR,PIR) = PIR .

*** iterated map
eq feu(0,feS,exS,wbS) = feS .
eq feu(T,feS,exS,wbS) = fenext(feu(T - 1,feS,exS,wbS),

exu(T - 1,feS,exS,wbS),
wbu(T - 1,feS,exS,wbS)) [owise] .

*** If the instruction isn’t a branch, increment PC as normal
ceq fenext((PM,PC,CIR,PIR),(RESULT,TAKEN,WBFLAG,MEMWBLOC,REGWBLOC),(DM,REG))

= (PM,PC + Four,PM[PC],CIR)
if opcode(cir(PM,PC,CIR,PIR)) =/= JMP .

*** If the instruction is a branch and is not taken, increment PC as normal
ceq fenext((PM,PC,CIR,PIR),(RESULT,TAKEN,WBFLAG,MEMWBLOC,REGWBLOC),(DM,REG))

28

= (PM,PC + Four,PM[PC],CIR)
if opcode(cir(PM,PC,CIR,PIR)) == JMP
and taken(RESULT,TAKEN,WBFLAG,MEMWBLOC,REGWBLOC) == false .

*** If the instruction is a taken branch, jump to location and store return address
ceq fenext((PM,PC,CIR,PIR),(RESULT,TAKEN,WBFLAG,MEMWBLOC,REGWBLOC),(DM,REG))

= (PM,REG[regc(CIR)],PM[REG[regc(CIR)]],CIR)
if opcode(cir(PM,PC,CIR,PIR)) == JMP
and taken(RESULT,TAKEN,WBFLAG,MEMWBLOC,REGWBLOC) == true .

*** EXECUTE EQUATIONS

eq result(RESULT,TAKEN,WBFLAG,MEMWBLOC,REGWBLOC) = RESULT .
eq taken(RESULT,TAKEN,WBFLAG,MEMWBLOC,REGWBLOC) = TAKEN .
eq wbflag(RESULT,TAKEN,WBFLAG,MEMWBLOC,REGWBLOC) = WBFLAG .
eq memwbloc(RESULT,TAKEN,WBFLAG,MEMWBLOC,REGWBLOC) = MEMWBLOC .
eq regwbloc(RESULT,TAKEN,WBFLAG,MEMWBLOC,REGWBLOC) = REGWBLOC .

*** iterated map
eq exu(0,feS,exS,wbS) = exS .
eq exu(T,feS,exS,wbS) = exnext(feu(T - 1,feS,exS,wbS),

exu(T - 1,feS,exS,wbS),
wbu(T - 1,feS,exS,wbS)) [owise] .

*** define instructions

*** NOP (opcode = 0)
ceq exnext((PM,PC,CIR,PIR),(RESULT,TAKEN,WBFLAG,MEMWBLOC,REGWBLOC),(DM,REG)) =

(NOPWORD,false,0,NOPWORD,NOP)
if opcode(cir(PM,PC,CIR,PIR)) == NOP .

*** ADD (opcode = 1)
ceq exnext((PM,PC,CIR,PIR),(RESULT,TAKEN,WBFLAG,MEMWBLOC,REGWBLOC),(DM,REG)) =

(REG[rega(CIR)] + REG[regb(CIR)],false,2,NOPWORD,REG[regc(CIR)])
if opcode(cir(PM,PC,CIR,PIR)) == ADD .

*** MULT (opcode = 10)
ceq exnext((PM,PC,CIR,PIR),(RESULT,TAKEN,WBFLAG,MEMWBLOC,REGWBLOC),(DM,REG)) =

(REG[rega(CIR)] * REG[regb(CIR)],false,2,NOPWORD,REG[regc(CIR)])
if opcode(cir(PM,PC,CIR,PIR)) == MULT .

*** AND (opcode = 11)
ceq exnext((PM,PC,CIR,PIR),(RESULT,TAKEN,WBFLAG,MEMWBLOC,REGWBLOC),(DM,REG)) =

(REG[rega(CIR)] & REG[regb(CIR)],false,2,NOPWORD,REG[regc(CIR)])
if opcode(cir(PM,PC,CIR,PIR)) == AND .

*** OR (opcode = 100)
ceq exnext((PM,PC,CIR,PIR),(RESULT,TAKEN,WBFLAG,MEMWBLOC,REGWBLOC),(DM,REG)) =

(REG[rega(CIR)] | REG[regb(CIR)],false,2,NOPWORD,REG[regc(CIR)])
if opcode(cir(PM,PC,CIR,PIR)) == OR .

*** NOT (opcode = 101)
ceq exnext((PM,PC,CIR,PIR),(RESULT,TAKEN,WBFLAG,MEMWBLOC,REGWBLOC),(DM,REG)) =

(!(REG[rega(CIR)]),false,2,NOPWORD,REG[regc(CIR)])
if opcode(cir(PM,PC,CIR,PIR)) == NOT .

*** SLL (opcode = 110)

29

ceq exnext((PM,PC,CIR,PIR),(RESULT,TAKEN,WBFLAG,MEMWBLOC,REGWBLOC),(DM,REG)) =
(REG[rega(CIR)] << REG[regb(CIR)],false,2,NOPWORD,REG[regc(CIR)])
if opcode(cir(PM,PC,CIR,PIR)) == SLL .

*** LD (opcode = 111)
ceq exnext((PM,PC,CIR,PIR),(RESULT,TAKEN,WBFLAG,MEMWBLOC,REGWBLOC),(DM,REG)) =

(DM[REG[rega(CIR)] + REG[regb(CIR)]],false,2,NOPWORD,REG[regc(CIR)])
if opcode(cir(PM,PC,CIR,PIR)) == LD .

*** ST (opcode = 1000)
ceq exnext((PM,PC,CIR,PIR),(RESULT,TAKEN,WBFLAG,MEMWBLOC,REGWBLOC),(DM,REG)) =

(REG[rega(CIR)] + REG[regb(CIR)],false,1,REG[regc(CIR)],NOP)
if opcode(cir(PM,PC,CIR,PIR)) == ST .

*** EQ (opcode = 1001) [RA == RB]
ceq exnext((PM,PC,CIR,PIR),(RESULT,TAKEN,WBFLAG,MEMWBLOC,REGWBLOC),(DM,REG)) =

(constzero32,false,2,NOPWORD,REG[regc(CIR)])
if opcode(cir(PM,PC,CIR,PIR)) == EQ and REG[rega(CIR)] == REG[regb(CIR)] .

*** EQ (opcode = 1001) [RA =/= RB]
ceq exnext((PM,PC,CIR,PIR),(RESULT,TAKEN,WBFLAG,MEMWBLOC,REGWBLOC),(DM,REG)) =

(constminus1,false,2,NOPWORD,REG[regc(CIR)])
if opcode(cir(PM,PC,CIR,PIR)) == EQ and REG[rega(CIR)] =/= REG[regb(CIR)] .

*** GT (opcode = 1010) [RA > RB]
ceq exnext((PM,PC,CIR,PIR),(RESULT,TAKEN,WBFLAG,MEMWBLOC,REGWBLOC),(DM,REG)) =

(constzero32,false,2,NOPWORD,REG[regc(CIR)])
if opcode(cir(PM,PC,CIR,PIR)) == GT and REG[rega(CIR)] gt REG[regb(CIR)] .

*** GT (opcode = 1010) [RA <= RB]
ceq exnext((PM,PC,CIR,PIR),(RESULT,TAKEN,WBFLAG,MEMWBLOC,REGWBLOC),(DM,REG)) =

(constminus1,false,2,NOPWORD,REG[regc(CIR)])
if opcode(cir(PM,PC,CIR,PIR)) == GT and not REG[rega(CIR)] gt REG[regb(CIR)] .

*** JMP (opcode = 1011) [branch not taken]
ceq exnext((PM,PC,CIR,PIR),(RESULT,TAKEN,WBFLAG,MEMWBLOC,REGWBLOC),(DM,REG)) =

(constzero32,false,0,NOPWORD,NOP)
if opcode(cir(PM,PC,CIR,PIR)) == JMP and REG[rega(CIR)] =/= REG[constzero8] .

*** JMP (opcode = 1011) [branch taken]
ceq exnext((PM,PC,CIR,PIR),(RESULT,TAKEN,WBFLAG,MEMWBLOC,REGWBLOC),(DM,REG)) =

(PC + Four,true,2,NOPWORD,REG[regb(CIR)])
if opcode(cir(PM,PC,CIR,PIR)) == JMP and REG[rega(CIR)] == REG[constzero8] .

*** WRITEBACK EQUATIONS

eq dm(DM,REG) = DM .
eq reg(DM,REG) = REG .

eq wbu(0,feS,exS,wbS) = wbS .
eq wbu(T,feS,exS,wbS) = wbnext(feu(T - 1,feS,exS,wbS),

exu(T - 1,feS,exS,wbS),
wbu(T - 1,feS,exS,wbS)) [owise] .

ceq wbnext((PM,PC,CIR,PIR),(RESULT,TAKEN,WBFLAG,MEMWBLOC,REGWBLOC),(DM,REG)) =
(DM[result(RESULT,TAKEN,WBFLAG,MEMWBLOC,REGWBLOC)
/ memwbloc(RESULT,TAKEN,WBFLAG,MEMWBLOC,REGWBLOC)],REG)
if wbflag(RESULT,TAKEN,WBFLAG,MEMWBLOC,REGWBLOC) == 1 .

30

ceq wbnext((PM,PC,CIR,PIR),(RESULT,TAKEN,WBFLAG,MEMWBLOC,REGWBLOC),(DM,REG)) =
(DM,REG[result(RESULT,TAKEN,WBFLAG,MEMWBLOC,REGWBLOC)
/ regwbloc(RESULT,TAKEN,WBFLAG,MEMWBLOC,REGWBLOC)])
if wbflag(RESULT,TAKEN,WBFLAG,MEMWBLOC,REGWBLOC) == 2 .

ceq wbnext((PM,PC,CIR,PIR),(RESULT,TAKEN,WBFLAG,MEMWBLOC,REGWBLOC),(DM,REG)) =
(DM,REG)
if wbflag(RESULT,TAKEN,WBFLAG,MEMWBLOC,REGWBLOC) == 0 .

endfm

Finally, a top-level iterated map coordinates the processor as a whole and enters
some initial values to each of the units.

sort PState .

op (_,_,_) : FeState ExState WbState -> PState .
op pmp : Int PState -> PState .
op pnext : PState -> PState .

op fetchunit_ : PState -> FeState .
op executeunit_ : PState -> ExState .
op writebackunit_ : PState -> WbState .

var FETCHUNIT : FeState .
var EXECUTEUNIT : ExState .
var WRITEBACKUNIT : WbState .

var PMP : PState .
var Time : Int .

eq fetchunit(FETCHUNIT,EXECUTEUNIT,WRITEBACKUNIT) = FETCHUNIT .
eq executeunit(FETCHUNIT,EXECUTEUNIT,WRITEBACKUNIT) = EXECUTEUNIT .
eq writebackunit(FETCHUNIT,EXECUTEUNIT,WRITEBACKUNIT) = WRITEBACKUNIT .

eq pmp(0,PMP) = PMP .
eq pmp(Time,PMP) = pnext(pmp(Time - 1,PMP)) [owise] .

eq pnext(FETCHUNIT,EXECUTEUNIT,WRITEBACKUNIT) =
(fenext(FETCHUNIT,EXECUTEUNIT,WRITEBACKUNIT),
exnext(FETCHUNIT,EXECUTEUNIT,WRITEBACKUNIT),
wbnext(FETCHUNIT,EXECUTEUNIT,WRITEBACKUNIT)) .

The implementation can then have reductions performed upon it, as with the
programmer’s model.

reduce pmp(1, ((Pm,Pc,Cir,Pir),(Res,Tk,Wflag,Wmemloc,Wregloc),(Dm,Rg))) .

31

4.2 Multi-core Processors

Multi-core processors can build upon two pipelined processors. Each is given
its own program to run, since multi-core is an idea to take advantage of TLP.
They do share data memory, though, and care must be taken to safeguard data
integrity.

4.2.1 Consistency Issues

When two processor cores share the same data memory, there is always the pos-
sibility that each will execute interdependent instructions simultaneously. This
could lead to a compromise of data integrity due to inconsistencies and mistakes
in program execution. A processor which executes instructions more efficiently
is useless if it makes computational errors. Therefore data consistency in a mul-
ticore processor is a key concern and steps must be taken to prevent these issues
from happening.

Data hazards in multi-core machines are as described earlier when discussing
pipelined machines. The likelihood of them occurring is hopefully much less,
since the operating system schedules two distinct processes to each core. How-
ever, processes may share memory and communicate, so the potential for incon-
sistency still remains.

4.2.2 Coordinating The Two Cores

Building upon the pipelined implementation of the previous section, a dual-core
processor can be described thusly.∑

pmp2 = (Fetch× Execute×Writeback)2 ×Mem2

Each pipeline retains its own program counter and registers but the contains of
memory are now shared between the pipelines9.

PMP 2 is loosely defined as follows:

9Since PM will never change, it would be perfectly possible to duplicate it into PM1 and
PM2 and place each in the Fetch state of the respective pipeline.

32

PMP 2 : S ×
∑

PMP 2 →
∑

PMP 2 ,
PMP 2(0, σ) = σ,
PMP 2(s+ 1, σ) = next(PMP 2(s, σ)),

where next :
∑

PMP 2 →
∑

PMP 2 is defined by

next(p1, p2, dm, pm) = (fetch(p1, dm, pm), execute(p1, dm, pm), writeback(p1, dm, pm),
fetch(p2, dm, pm), execute(p2, dm, pm), writeback(p2, dm, pm),
dm(p1, p2, dm, pm), pm)

33

5 Thoughts and Conclusions

Overall, the algebraic methods employed for describing the changes of state over
time in complex microprocessors are rather effective. Provided that the system
is properly broken up into smaller conceptual entities, the process of describing
a system’s state evolution tends to be successful. Although the models devel-
oped in this project are nowhere near as complex as a hardware example, the
concepts used are extensible enough to be able to describe any given system.
The real challenge, it seems, is coordinating the level of abstraction carefully.

Microprocessors which have been specified using the algebraic tools laid out here
can be proven mathematically correct using one-step theorem provers. There-
fore the continued research in this area has the potential to yield better hardware
in practice. The ARM6 microprocessor was developed using similar methods[9].
Although this project has not been specifically aimed at proving correctness
of specifications, it aims to show that machines can be specified elegantly in
algebra, reduced by Maude and ultimately proven correct.

This project began in September of 2006 as an ambitious quest to explore spec-
ification of several types of machine: Pipelined, Multicore, Multithreaded and
Superscalar. In the months that followed, it became increasingly clear that
developing each of these would not be feasible and focus was shifted to the de-
velopment of the Pipelined and Multicore models with significant emphasis on
the former. Overall, I am rather pleased with the way these have turned out.

In future work, it would be a good idea to model a processor with pipeline
interlocks. MIPS processors are used in industry but there are plenty of other
commercial processors which implement their own locking mechanisms. Al-
though MIPS may be simple, it requires the programmer to know more about
the underlying architecture than should really be necessary. Therefore future
endeavours in this field should focus (amongst other things) upon the develop-
ment of effective dependency resolution.

34

References

[1] “Computer Architecture: A Quantitive Approach”, Third Edition by John
L. Hennessy, David A. Patterson.

[2] “Algebraic Models of Microprocessors: Architecture and Organisation” by
N. A. Harman and J. V. Tucker, Acta Informatica 33 (1996).

[3] “Correctness and Verification of Hardware Systems Using Maude” by N.
A. Harman, Swansea University.

[4] “High Performance Microprocessors” by N. A. Harman and A. M. Gimblett,
Swansea University, 2006.

[5] “System Specification” by N. A. Harman and M. Seisenberger, Swansea
University, 2006.

[6] “Algebraic Models of Simultaneous Multi-Threaded and Multi-Core Micro-
processors” by N. A. Harman, Swansea University, 2006.

[7] “Algebraic Models of Computers” by N. A. Harman, Swansea University,
2006.

[8] “Modelling SMT and CMT Processors: A Simple Case Study” by N. A.
Harman, Swansea University, 2007.

[9] “Formal specification and verification of ARM6.” by A. C. J. Fox. In D
Basin and B Wolff, editors, TPHOLs 03, volume 2758 of Lecture Notes in
Computer Science, pages 2540. Springer-Verlag, 2003.

[10] Intel’s White Papers, The Intel Technology Journal (1998 - 2006).

[11] “The Maude 2.0 System” by Manuel Clavel, Francisco Durn, Steven Eker,
Patrick Lincoln, Narciso Mart-Oliet, Jos Meseguer and Carolyn Talcott.
Published in Proc. Rewriting Techniques and Applications, 2003 , Springer-
Verlag LNCS 2706, 76-87, 2003.

[12] “The Java(TM) Language Specification”, 3rd Edition, by James Gosling,
Bill Joy, Guy Steele, Gilad Bracha, 2005.

[13] “Programming Ruby: The Pragmatic Programmer’s Guide”, by Dave
Thomas, Chad Fowler, Andy Hunt, 2004.

[14] Microprocessor diagrams acquired under a free usage license from the public
domain.

35

A Case Studies

A.1 The MIPS Processor

The MIPS processor (Microprocessor without Interlocked Pipeline Stages) was
developed at Stanford by a team lead by Dr. John L. Hennesy. As the name
suggests, the processor was designed without pipeline stage interlocking. This
means there is no built-in protection from data hazards and any name or value
dependencies must be resolved by the compiler before runtime. In terms of
architecture, the MIPS processor is a very clean RISC style machine. Despite
the desktop market being dominated by x86 architecture, MIPS processors are
currently thriving in specialised devices such as gaming consoles, set-top boxes
and home entertainment systems.

The MIPS pipeline uses 5 stages - Fetch, Decode, Execute, Memory Access,
and Writeback. Here is a graphical representation of the flow of data in the
pipeline.

The MIPS architecture is a useful base for the design of microprocessor spec-
ification because it aims to be clean and simple. The lack of interlocks can
be viewed as a downfall but this simplification of the pipeline allows for faster
prototyping and fewer errors in development of the machine.

36

B Source Code

37

*** "A 32-bit Generic RISC Microprocessor Specification"
*** Sean Handley, sean.handley@gmail.com
*** 2006-08-02

*** Definitions for binary arithmetic

fmod BINARY is
 protecting INT .

 sorts Bit Bits .

 subsort Bit < Bits .

 ops 0 1 : -> Bit .
 op __ : Bits Bits -> Bits [assoc prec 1 gather (e E)] .
 op |_| : Bits -> Int .
 op normalize : Bits -> Bits .
 op bits : Bits Int Int -> Bits .
 op _++_ : Bits Bits -> Bits [assoc comm prec 5 gather (E e)] .
 op _**_ : Bits Bits -> Bits [assoc comm prec 4 gather (E e)] .
 op _>_ : Bits Bits -> Bool [prec 6 gather (E E)] .
 op not_ : Bits -> Bits [prec 2 gather (E)] .
 op _and_ : Bits Bits -> Bits [assoc comm prec 2 gather (E e)] .
 op _or_ : Bits Bits -> Bits [assoc comm prec 2 gather (E e)] .
 op _sl_ : Bits Bits -> Bits [prec 2 gather (E e)] .
 op _-- : Bits -> Bits [prec 2 gather (E)] .
 op bin2int : Bits -> Int .

 vars S T : Bits .
 vars B C : Bit .
 var L : Bool .
 vars I J : Int .

 op constzero32 : -> Bits .
 op constzero8 : -> Bits .

 *** define constants for zero^32 and zero^8
 eq constzero32 = 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 .

 eq constminus1 = 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1 .

 eq constzero8 = 0 0 0 0 0 0 0 0 .

 *** Binary to Integer
 ceq bin2int(B) = 0 if normalize(B) == 0 .
 ceq bin2int(B) = 1 if normalize(B) == 1 .
 eq bin2int(S) = 1 + bin2int((S)--) .

 *** Length

 eq | B | = 1 .
 eq | S B | = | S | + 1 .

 *** Extract Bits...
 eq bits(S B, 0, 0) = B .
 eq bits(B,J, 0) = B .
 ceq bits(S B,J, 0) = bits(S, J - 1, 0) B if J > 0 .
 ceq bits(S B,J,I) = bits(S,J - 1,I - 1) if I > 0 and J > 0 .

 *** Not
 eq not (S T) = (not S) (not T) .
 eq not 0 = 1 .
 eq not 1 = 0 .

 *** And
 eq B and 0 = 0 .
 eq B and 1 = B .
 eq (S B) and (T C) = (S and T) (B and C) .

 *** Or
 eq B or 0 = B .
 eq B or 1 = 1 .
 eq (S B) or (T C) = (S or T) (B or C) .

 *** Normalize supresses zeros at the
 *** left of a binary number
 eq normalize(0) = 0 .
 eq normalize(1) = 1 .
 eq normalize(0 S) = normalize(S) .
 eq normalize(1 S) = 1 S .

 *** Greater than
 eq 0 > S = false .
 eq 1 > (0).Bit = true .
 eq 1 > (1).Bit = false .
 eq B > (0 S) = B > S .
 eq B > (1 S) = false .
 eq (1 S) > B = true .
 eq (B S) > (C T)

 = if | normalize(B S) | > | normalize(C T) |

 then true
 else if | normalize(B S) | < | normalize(C T) |

 then false
 else (S > T)
 fi

 fi .

 *** Binary addition
 eq 0 ++ S = S .
 eq 1 ++ 1 = 1 0 .
 eq 1 ++ (T 0) = T 1 .
 eq 1 ++ (T 1) = (T ++ 1) 0 .
 eq (S B) ++ (T 0) = (S ++ T) B .
 eq (S 1) ++ (T 1) = (S ++ T ++ 1) 0 .

 *** Binary multiplication
 eq 0 ** T = 0 .
 eq 1 ** T = T .

 eq (S B) ** T = ((S ** T) 0) ++ (B ** T) .

 *** Decrement
 eq 0 -- = 0 .
 eq 1 -- = 0 .
 eq (S 1) -- = normalize(S 0) .
 ceq (S 0) -- = normalize(S --) 1 if normalize(S) =/ = 0 .
 ceq (S 0) -- = 0 if normalize(S) == 0 .

 *** Shift left
 ceq S sl T = ((S 0) sl (T --)) if bin2int(T) > 0 .
 eq S sl T = S .
endfm

*** Module for dealing with machine words and instruction formats.

fmod MACHINE-WORD is
 protecting BINARY .

 *** 32-bit machine word, 1 byte per opcode/reg address
 *** Opfields and register addresses are both 1 byte so they share a name

 sorts OpField Word .

 subsort OpField < Bits .
 subsort Word < Bits .

 op opcode : Word -> OpField .
 ops rega regb regc : Word -> OpField .

 op _+_ : Word Word -> Word .
 op _+_ : OpField OpField -> OpField .

 op _+8_ : Word Word -> Word .
 op _+8_ : OpField OpField -> OpField .

 op _*_ : Word Word -> Word .
 op _*_ : OpField OpField -> OpField .

 op _&_ : Word Word -> Word .
 op _&_ : OpField OpField -> OpField .

 op _|_ : Word Word -> Word .
 op _|_ : OpField OpField -> OpField .

 op !_ : Word -> Word .
 op !_ : OpField -> OpField .

 op _<<_ : Word Word -> Word .
 op _<<_ : OpField OpField -> OpField .

 op _gt_ : Word Word -> Bool .
 op _gt_ : OpField OpField -> Bool .

 vars B1 B2 B3 B4 B5 B6 B7 B8 : Bit .
 vars B9 B10 B11 B12 B13 B14 B15 B16 : Bit .
 vars B17 B18 B19 B20 B21 B22 B23 B24 : Bit .
 vars B25 B26 B27 B28 B29 B30 B31 B32 : Bit .

 vars V W : Word .
 vars A B : OpField .

 *** 8 bits = opfield
 mb (B1 B2 B3 B4 B5 B6 B7 B8) : OpField .

 *** 32 bits = word and/or memory address
 mb (B1 B2 B3 B4 B5 B6 B7 B8
 B9 B10 B11 B12 B13 B14 B15 B16
 B17 B18 B19 B20 B21 B22 B23 B24

 B25 B26 B27 B28 B29 B30 B31 B32) : Word .

 *** 1 byte per opcode/reg address
 eq opcode(W) = bits(W, 31 , 24) .
 *** eq opcode(W) = bits(W,7,0) .
 eq rega(W) = bits(W, 23 , 16) .
 *** eq rega(W) = bits(W,15,8) .
 eq regb(W) = bits(W, 15 , 8) .
 *** eq regb(W) = bits(W,23,16) .
 eq regc(W) = bits(W, 7, 0) .
 *** eq regc(W) = bits(W,31,24) .

 *** truncate the last 32 bits/8 bits resp
 eq V + W = bits(V ++ W, 31 , 0) .
 eq A + B = bits(A ++ B, 7, 0) .
 eq V gt W = V > W .
 eq A gt B = A > B .
 eq V * W = bits(V ** W, 31 , 0) .
 eq A * B = bits(A ** B, 7, 0) .
 eq ! V = bits(not V, 31 , 0) .
 eq ! A = bits(not A, 7, 0) .
 eq V & W = bits(V and W, 31 , 0) .
 eq A & B = bits(A and B, 7, 0) .
 eq V | W = bits(V or W, 31 , 0) .
 eq A | B = bits(A or B, 7, 0) .
 eq V << W = bits(V sl W, 31 , 0) .
 eq A << B = bits(A sl B, 7, 0) .
endfm

*** Module for representing memory. Words are 32 bits.

fmod MEM is
 protecting MACHINE-WORD .

 sorts Mem .

 op _ [_] : Mem Word -> Word . *** read
 op _ [_/_] : Mem Word Word -> Mem . *** write

 var M : Mem .

 var A B : Word .
 var W : Word .

 eq M[W / A][A] = W .
 eq M[W / A][B] = M[B] [owise] . *** seek if not found
endfm

*** Module for representing registers.

fmod REG is
 protecting MACHINE-WORD .

 sorts Reg .

 op _ [_] : Reg OpField -> Word . *** read
 op _ [_/_] : Reg Word OpField -> Reg . *** write

 var R : Reg .
 var A B : OpField .
 var W : Word .

 eq R [W / A][A] = W .
 eq R [W / A][B] = R[B] [owise] . *** seek if not found
endfm

*** State of SPM, together with tupling and projection functions

fmod SPM-STATE is
 protecting MEM .
 protecting REG .

 sort SPMstate .

 op (_,_,_,_) : Mem Mem Word Reg -> SPMstate .

 *** project out program and data mem
 ops mp_ md_ : SPMstate -> Mem .

 *** project out PC
 op pc_ : SPMstate -> Word .

 *** project out regs
 op reg_ : SPMstate -> Reg .

 var S : SPMstate .
 vars MP MD : Mem .
 var PC : Word .
 var REG : Reg .

 *** tuple member accessor functions
 eq mp(MP,MD,PC,REG) = MP .
 eq md(MP,MD,PC,REG) = MD .
 eq pc(MP,MD,PC,REG) = PC .
 eq reg(MP,MD,PC,REG) = REG .
endfm

*** SPM

*** This is the "main" function, where we define the state funtion spm and the
*** next-state function next.

fmod SPM is
 protecting SPM-STATE .

 ops ADD32 MULT AND OR NOT : -> OpField .
 ops SLL LD32 ST32 EQ GT JMP : -> OpField .
 op Four : -> Word .

 op spm : Int SPMstate -> SPMstate .

 op next : SPMstate -> SPMstate .

 var SPM : SPMstate .
 var T : Int .
 var MP MD : Mem .
 var PC A : Word .
 var REG : Reg .
 var O P : OpField .

 *** define the opcodes
 eq ADD32 = 0 0 0 0 0 0 0 0 .
 eq MULT = 0 0 0 0 0 0 1 0 .
 eq AND = 0 0 0 0 0 0 1 1 .
 eq OR = 0 0 0 0 0 1 0 0 .
 eq NOT = 0 0 0 0 0 1 0 1 .
 eq SLL = 0 0 0 0 0 1 1 0 .
 eq LD32 = 0 0 0 0 0 1 1 1 .
 eq ST32 = 0 0 0 0 1 0 0 0 .
 eq EQ = 0 0 0 0 1 0 0 1 .
 eq GT = 0 0 0 0 1 0 1 0 .
 eq JMP = 0 0 0 0 1 0 1 1 .

 *** constant four to jump to the next instruction
 eq Four = 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 1 0 0 .

 eq spm(0,SPM) = SPM .
 eq spm(T,SPM) = next(spm(T - 1,SPM)) [owise] .

 *** Fix the zero register
 eq REG[0 0 0 0 0 0 0 0] = constzero32 .
 ceq REG[A / O][O] = constzero32 if O == constzero8 .
 eq REG[A / O][P] = REG[P] [owise] .

 *** define instructions

 *** ADD32 (opcode = 0)
 ceq next(MP,MD,PC,REG) = (MP, MD, PC + Four,

 REG [REG[rega(MP[PC])] + REG[regb(MP[PC])] / regc(MP[PC])])

 if opcode(MP [PC]) == ADD32 .
 *** MULT (opcode = 10)
 ceq next(MP,MD,PC,REG) = (MP, MD, PC + Four,

 REG [REG[rega(MP[PC])] * REG[regb(MP[PC])] / regc(MP[PC])])

 if opcode(MP [PC]) == MULT .
 *** AND (opcode = 11)
 ceq next(MP,MD,PC,REG) = (MP, MD, PC + Four,

 REG [REG[rega(MP[PC])] & REG[regb(MP[PC])] / regc(MP[PC])])

 if opcode(MP [PC]) == AND .
 *** OR (opcode = 100)
 ceq next(MP,MD,PC,REG) = (MP, MD, PC + Four,

 REG [REG[rega(MP[PC])] | REG[regb(MP[PC])] / regc(MP[PC])])

 if opcode(MP [PC]) == OR .
 *** NOT (opcode = 101)
 ceq next(MP,MD,PC,REG) = (MP, MD, PC + Four,

 REG [!(REG[rega(MP[PC])]) / regc(MP[PC])])

 if opcode(MP [PC]) == NOT .
 *** SLL (opcode = 110)
 ceq next(MP,MD,PC,REG) = (MP, MD, PC + Four,

 REG [REG[rega(MP[PC])] << REG[regb(MP[PC])] / regc(MP[PC])])

 if opcode(MP [PC]) == SLL .
 *** LD32 (opcode = 111)
 ceq next(MP,MD,PC,REG) = (MP, MD, PC + Four,

 REG [MD[REG[rega(MP[PC])] + REG[regb(MP[PC])]] / regc(MP[PC])])

 if opcode(MP [PC]) == LD32 .
 *** ST32 (opcode = 1000)
 ceq next(MP,MD,PC,REG) = (MP,

 MD [REG[regc(MP[PC])] / (REG[rega(MP[PC])] + REG[regb(MP[PC])])] , PC + Four, REG)

 if opcode(MP [PC]) == ST32 .
 *** EQ (opcode = 1001) [RA == RB]
 ceq next(MP,MD,PC,REG) = (MP, MD, PC + Four,

 REG [0 / regc(MP[PC])])

 if opcode(MP [PC]) == EQ and REG[rega(MP[PC])] == REG[regb(MP[PC])] .
 *** EQ (opcode = 1001) [RA =/= RB]
 ceq next(MP,MD,PC,REG) = (MP, MD, PC + Four,

 REG [1 0 1 / regc(MP[PC])])

 if opcode(MP [PC]) == EQ and REG[rega(MP[PC])] =/= REG[regb(MP[PC])] .
 *** GT (opcode = 1010) [RA > RB]
 ceq next(MP,MD,PC,REG) = (MP, MD, PC + Four,

 REG [0 / regc(MP[PC])])

 if opcode(MP [PC]) == GT and REG[rega(MP[PC])] gt REG[regb(MP[PC])] .
 *** GT (opcode = 1010) [RA <= RB]
 ceq next(MP,MD,PC,REG) = (MP, MD, PC + Four,

 REG [1 0 1 / regc(MP[PC])])

 if opcode(MP [PC]) == GT and not (REG[rega(MP[PC])] gt REG[regb(MP[PC])]) .
 *** JMP (opcode = 1011) [branch not taken]
 ceq next(MP,MD,PC,REG) = (MP, MD, PC + Four,REG)

 if opcode(MP [PC]) == JMP and REG[rega(MP[PC])] =/= REG[0 0 0 0 0 0 0 0] .
 *** JMP (opcode = 1011) [branch taken]
 ceq next(MP,MD,PC,REG) = (MP,MD,

 REG [regc(MP[PC])], REG[PC + Four / regb(MP[PC])])

 if opcode(MP [PC]) == JMP and REG[rega(MP[PC])] == REG[0 0 0 0 0 0 0 0] .
endfm

*** The final module is to define an actual program and run it.

fmod RUNPROGS is
 protecting SPM . *** import the microprocessor representation

 ops Md Mp : -> Mem .
 op Rg : -> Reg .
 op Pc : -> Word .

 *** Set the PC to zero

 eq Pc = 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 .

 *** R1 = 1
 eq Rg [0 0 0 0 0 0 0 1] =
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 1 .

 *** R2 = 0
 eq Rg [0 0 0 0 0 0 1 0] =
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 .

 *** R13 = 252
 eq Rg [0 0 0 0 1 1 0 1] =
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 1 1 1 1 1 1 0 0 .

 *** Mem[1] = 6
 eq Md [0 1] =
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 1 1 0 .

 *** Mem[2] = 5
 eq Md [0 1 0] =
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 1 0 1 .

 *** INST 1 [Load (RG1+RG1) into RG3] -> Mem[2] = 5
 eq Mp [0 0] =
 0 0 0 0 0 1 1 1 *** LOAD
 0 0 0 0 0 0 0 1 *** RG1
 0 0 0 0 0 0 0 1 *** RG1
 0 0 0 0 0 0 1 1 . *** RG3

 *** INST 2 [Load (RG1+RG2) into RG4] -> Mem[2] = 5
 eq Mp [0 1 0 0] =
 0 0 0 0 0 1 1 1 *** LOAD
 0 0 0 0 0 0 0 1 *** RG1
 0 0 0 0 0 0 0 1 *** RG1
 0 0 0 0 0 1 0 0 . *** RG4

 *** INST 3 [Shift left R3 by R4 and store in R5]
 eq Mp [0 1 0 0 0] =
 0 0 0 0 0 1 1 0 *** SHIFTL
 0 0 0 0 0 0 1 1 *** RG3

 0 0 0 0 0 1 0 0 *** RG4
 0 0 0 0 0 1 0 1 . *** RG5

 *** INST 4 [Store RG5 in Mem[RG2+RG3]] -> Mem[5] = 160
 eq Mp [0 1 1 0 0] =
 0 0 0 0 1 0 0 0 *** STORE
 0 0 0 0 0 0 1 0 *** RG2
 0 0 0 0 0 0 1 1 *** RG3
 0 0 0 0 0 1 0 1 . *** RG5

 *** INST 5 [Add RG3 and RG4 and store in RG6] -> RG[6] = 10
 eq Mp [0 1 0 0 0 0] =
 0 0 0 0 0 0 0 0 *** ADD
 0 0 0 0 0 0 1 1 *** RG3
 0 0 0 0 0 1 0 0 *** RG4
 0 0 0 0 0 1 1 0 . *** RG6

 *** INST 6 [Mult RG3 by RG4 and store in RG7] -> RG[7] = 25
 eq Mp [0 1 0 1 0 0] =
 0 0 0 0 0 0 1 0 *** MULT
 0 0 0 0 0 0 1 1 *** RG3
 0 0 0 0 0 1 0 0 *** RG4
 0 0 0 0 0 1 1 1 . *** RG7

 *** INST 7 [Bitwise and of RG3 and RG4, stored in RG8] -> RG[8] = 5
 eq Mp [0 1 1 0 0 0] =
 0 0 0 0 0 0 1 1 *** AND
 0 0 0 0 0 0 1 1 *** RG3
 0 0 0 0 0 1 0 0 *** RG4
 0 0 0 0 1 0 0 0 . *** RG8

 *** INST 8 [Bitwise or of RG3 and RG4, stored in RG9] -> RG[9] = 5
 eq Mp [0 1 1 1 0 0] =
 0 0 0 0 0 1 0 0 *** OR
 0 0 0 0 0 0 1 1 *** RG3
 0 0 0 0 0 1 0 0 *** RG4
 0 0 0 0 1 0 0 1 . *** RG9

 *** INST 9 [Inverse of RG3, stored in R10]
 eq Mp [0 1 0 0 0 0 0] =
 0 0 0 0 0 1 0 1 *** NOT
 0 0 0 0 0 0 1 1 *** RG3
 0 0 0 0 0 0 0 0 *** RG0
 0 0 0 0 1 0 1 0 . *** RG10

 *** INST 10 [Test if RG7 = RG8] -> RG[7] = 25, RG[8] = 5, Answer = -1 (false)
 eq Mp [0 1 0 0 1 0 0] =
 0 0 0 0 1 0 0 1 *** EQ
 0 0 0 0 0 1 1 1 *** RG7
 0 0 0 0 1 0 0 0 *** RG8
 0 0 0 0 1 0 1 1 . *** R11

 *** INST 11 [Test if R11 == 0] -> false, no jump
 eq Mp [0 1 0 1 0 0 0] =
 0 0 0 0 1 0 1 1 *** JMP
 0 0 0 0 1 0 1 1 *** R11
 0 0 0 0 1 1 0 0 *** R12
 0 0 0 0 1 1 0 1 . *** R13

 *** INST 12 [Test if RG7 > RG8] -> RG[7] = 25, RG[8] = 5, Answer = 0 (true)
 eq Mp [0 1 0 1 1 0 0] =
 0 0 0 0 1 0 1 0 *** GT
 0 0 0 0 0 1 1 1 *** RG7
 0 0 0 0 1 0 0 0 *** RG8
 0 0 0 0 1 0 1 1 . *** RG11

 *** INST 13 [Test if RG11 == 0] -> true, jump to R13, store PC+4 in RG12
 eq Mp [0 1 1 0 0 0 0] =
 0 0 0 0 1 0 1 1 *** JMP
 0 0 0 0 1 0 1 1 *** RG11
 0 0 0 0 1 1 0 0 *** RG12
 0 0 0 0 1 1 0 1 . *** RG13

 *** INST 14 [Subroutine][Add RG3 to RG4 and store in RG14] -> R[14] = 10
 eq Mp [0 1 1 1 1 1 1 0 0] =
 0 0 0 0 0 0 0 0 *** ADD
 0 0 0 0 0 0 1 1 *** RG3
 0 0 0 0 0 1 0 0 *** RG4
 0 0 0 0 1 1 1 0 . *** RG14

 *** INST 15 [Test if R11 == 0] -> True, jump back to R[12]
 eq Mp [0 1 0 0 0 0 0 0 0 0] =
 0 0 0 0 1 0 1 1 *** JMP
 0 0 0 0 1 0 1 1 *** RG11
 0 0 0 0 1 1 1 1 *** RG15
 0 0 0 0 1 1 0 0 . *** RG12

 *** INST 16 [Return from subroutine] [Add R7 to R8 and store in R16] -> R[16] = 25 + 5 =30
 eq Mp [0 1 1 0 1 0 0] =
 0 0 0 0 0 0 0 0 *** ADD
 0 0 0 0 0 1 1 1 *** RG7
 0 0 0 0 1 0 0 0 *** RG8
 0 0 0 1 0 0 0 0 . *** R16
endfm

*** Now run the program

reduce spm(1, (Mp,Md,Pc,Rg)) .
reduce spm(2, (Mp,Md,Pc,Rg)) .
reduce spm(3, (Mp,Md,Pc,Rg)) .
reduce spm(4, (Mp,Md,Pc,Rg)) .
reduce spm(5, (Mp,Md,Pc,Rg)) .
reduce spm(6, (Mp,Md,Pc,Rg)) .
reduce spm(7, (Mp,Md,Pc,Rg)) .
reduce spm(8, (Mp,Md,Pc,Rg)) .
reduce spm(9, (Mp,Md,Pc,Rg)) .
reduce spm(10 , (Mp,Md,Pc,Rg)) .
reduce spm(11 , (Mp,Md,Pc,Rg)) .
reduce spm(12 , (Mp,Md,Pc,Rg)) .
reduce spm(13 , (Mp,Md,Pc,Rg)) .
reduce spm(14 , (Mp,Md,Pc,Rg)) .
reduce spm(15 , (Mp,Md,Pc,Rg)) .
reduce spm(16 , (Mp,Md,Pc,Rg)) .

q

*** "A 32-bit Pipelined RISC Microprocessor Specification"
*** Sean Handley, sean.handley@gmail.com
*** 2006-11-10

*** Definitions for binary arithmetic

fmod BINARY is
 protecting INT .

 sorts Bit Bits .

 subsort Bit < Bits .

 ops 0 1 : -> Bit .
 op __ : Bits Bits -> Bits [assoc prec 1 gather (e E)] .
 op |_| : Bits -> Int .
 op normalize : Bits -> Bits .
 op bits : Bits Int Int -> Bits .
 op _++_ : Bits Bits -> Bits [assoc comm prec 5 gather (E e)] .
 op _**_ : Bits Bits -> Bits [assoc comm prec 4 gather (E e)] .
 op _>_ : Bits Bits -> Bool [prec 6 gather (E E)] .
 op not_ : Bits -> Bits [prec 2 gather (E)] .
 op _and_ : Bits Bits -> Bits [assoc comm prec 2 gather (E e)] .
 op _or_ : Bits Bits -> Bits [assoc comm prec 2 gather (E e)] .
 op _sl_ : Bits Bits -> Bits [prec 2 gather (E e)] .
 op _-- : Bits -> Bits [prec 2 gather (E)] .
 op bin2int : Bits -> Int .

 vars S T : Bits .
 vars B C : Bit .
 var L : Bool .
 vars I J : Int .

 op constzero32 : -> Bits .
 op constzero8 : -> Bits .
 op constminus1 : -> Bits .

 *** define constants for zero^32 and zero^8
 eq constzero32 = 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 .

 eq constzero8 = 0 0 0 0 0 0 0 0 .

 eq constminus1 = 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1 .

 *** Binary to Integer
 ceq bin2int(B) = 0 if normalize(B) == 0 .
 ceq bin2int(B) = 1 if normalize(B) == 1 .
 eq bin2int(S) = 1 + bin2int((S)--) .

 *** Length
 eq | B | = 1 .

 eq | S B | = | S | + 1 .

 *** Extract Bits...
 eq bits(S B, 0, 0) = B .
 eq bits(B,J, 0) = B .
 ceq bits(S B,J, 0) = bits(S, J - 1, 0) B if J > 0 .
 ceq bits(S B,J,I) = bits(S,J - 1,I - 1) if I > 0 and J > 0 .

 *** Not
 eq not (S T) = (not S) (not T) .
 eq not 0 = 1 .
 eq not 1 = 0 .

 *** And
 eq B and 0 = 0 .
 eq B and 1 = B .
 eq (S B) and (T C) = (S and T) (B and C) .

 *** Or
 eq B or 0 = B .
 eq B or 1 = 1 .
 eq (S B) or (T C) = (S or T) (B or C) .

 *** Normalize supresses zeros at the
 *** left of a binary number
 eq normalize(0) = 0 .
 eq normalize(1) = 1 .
 eq normalize(0 S) = normalize(S) .
 eq normalize(1 S) = 1 S .

 *** Greater than
 eq 0 > S = false .
 eq 1 > (0).Bit = true .
 eq 1 > (1).Bit = false .
 eq B > (0 S) = B > S .
 eq B > (1 S) = false .
 eq (1 S) > B = true .
 eq (B S) > (C T)

 = if | normalize(B S) | > | normalize(C T) |

 then true
 else if | normalize(B S) | < | normalize(C T) |

 then false
 else (S > T)
 fi

 fi .

 *** Binary addition
 eq 0 ++ S = S .
 eq 1 ++ 1 = 1 0 .
 eq 1 ++ (T 0) = T 1 .
 eq 1 ++ (T 1) = (T ++ 1) 0 .
 eq (S B) ++ (T 0) = (S ++ T) B .
 eq (S 1) ++ (T 1) = (S ++ T ++ 1) 0 .

 *** Binary multiplication
 eq 0 ** T = 0 .
 eq 1 ** T = T .
 eq (S B) ** T = ((S ** T) 0) ++ (B ** T) .

 *** Decrement
 eq 0 -- = 0 .

 eq 1 -- = 0 .
 eq (S 1) -- = normalize(S 0) .
 ceq (S 0) -- = normalize(S --) 1 if normalize(S) =/ = 0 .
 ceq (S 0) -- = 0 if normalize(S) == 0 .

 *** Shift left
 ceq S sl T = ((S 0) sl (T --)) if bin2int(T) > 0 .
 eq S sl T = S .
endfm

*** Module for dealing with machine words and instruction formats.

fmod MACHINE-WORD is
 protecting BINARY .

 *** 32-bit machine word, 1 byte per opcode/reg address
 *** Opfields and register addresses are both 1 byte so they share a name

 sorts OpField Word .

 subsort OpField < Bits .
 subsort Word < Bits .

 op opcode : Word -> OpField .
 ops rega regb regc : Word -> OpField .

 op _+_ : Word Word -> Word .
 op _+_ : OpField OpField -> OpField .

 op _*_ : Word Word -> Word .
 op _*_ : OpField OpField -> OpField .

 op _&_ : Word Word -> Word .
 op _&_ : OpField OpField -> OpField .

 op _|_ : Word Word -> Word .
 op _|_ : OpField OpField -> OpField .

 op !_ : Word -> Word .
 op !_ : OpField -> OpField .

 op _<<_ : Word Word -> Word .
 op _<<_ : OpField OpField -> OpField .

 op _gt_ : Word Word -> Bool .
 op _gt_ : OpField OpField -> Bool .

 op Four : -> Bits .

 vars B1 B2 B3 B4 B5 B6 B7 B8 : Bit .
 vars B9 B10 B11 B12 B13 B14 B15 B16 : Bit .
 vars B17 B18 B19 B20 B21 B22 B23 B24 : Bit .
 vars B25 B26 B27 B28 B29 B30 B31 B32 : Bit .

 vars V W : Word .
 vars A B : OpField .

 *** 8 bits = opfield
 mb (B1 B2 B3 B4 B5 B6 B7 B8) : OpField .

 *** 32 bits = word and/or memory address
 mb (B1 B2 B3 B4 B5 B6 B7 B8

 B9 B10 B11 B12 B13 B14 B15 B16
 B17 B18 B19 B20 B21 B22 B23 B24

 B25 B26 B27 B28 B29 B30 B31 B32) : Word .

 *** 1 byte per opcode/reg address
 eq opcode(W) = bits(W, 31 , 24) .
 *** eq opcode(W) = bits(W,7,0) .
 eq rega(W) = bits(W, 23 , 16) .
 *** eq rega(W) = bits(W,15,8) .
 eq regb(W) = bits(W, 15 , 8) .
 *** eq regb(W) = bits(W,23,16) .
 eq regc(W) = bits(W, 7, 0) .
 *** eq regc(W) = bits(W,31,24) .

 *** truncate the last 32 bits/8 bits resp
 eq V + W = bits(V ++ W, 31 , 0) .
 eq A + B = bits(A ++ B, 7, 0) .
 eq V gt W = V > W .
 eq A gt B = A > B .
 eq V * W = bits(V ** W, 31 , 0) .
 eq A * B = bits(A ** B, 7, 0) .
 eq ! V = bits(not V, 31 , 0) .
 eq ! A = bits(not A, 7, 0) .
 eq V & W = bits(V and W, 31 , 0) .
 eq A & B = bits(A and B, 7, 0) .
 eq V | W = bits(V or W, 31 , 0) .
 eq A | B = bits(A or B, 7, 0) .
 eq V << W = bits(V sl W, 31 , 0) .
 eq A << B = bits(A sl B, 7, 0) .

 *** constant four to jump to the next instruction
 eq Four = 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 1 0 0 .

endfm

*** Module for representing memory. Words are 32 bits.

fmod MEM is
 protecting MACHINE-WORD .

 sorts Mem .

 op _ [_] : Mem Word -> Word . *** read
 op _ [_/_] : Mem Word Word -> Mem . *** write

 var M : Mem .

 var A B : Word .
 var W : Word .

 eq M[W / A][A] = W .
 eq M[W / A][B] = M[B] [owise] .
endfm

*** Module for representing registers.

fmod REG is
 protecting MACHINE-WORD .

 sorts Reg .

 op _ [_] : Reg OpField -> Word . *** read
 op _ [_/_] : Reg Word OpField -> Reg . *** write

 var R : Reg .
 var A B : OpField .
 var W : Word .

 eq R [W / A][A] = W .
 eq R [W / A][B] = R[B] [owise] .
endfm

*** Instruction definitions

fmod INSTRUCTION-SET is
 protecting MACHINE-WORD .

 ops ADD MULT AND OR NOT : -> OpField .
 ops SLL LD ST EQ GT JMP NOP : -> OpField .
 op NOPWORD : -> Word .

 *** define the opcodes
 eq ADD = 0 0 0 0 0 0 0 1 .
 eq MULT = 0 0 0 0 0 0 1 0 .
 eq AND = 0 0 0 0 0 0 1 1 .
 eq OR = 0 0 0 0 0 1 0 0 .
 eq NOT = 0 0 0 0 0 1 0 1 .
 eq SLL = 0 0 0 0 0 1 1 0 .
 eq LD = 0 0 0 0 0 1 1 1 .
 eq ST = 0 0 0 0 1 0 0 0 .
 eq EQ = 0 0 0 0 1 0 0 1 .
 eq GT = 0 0 0 0 1 0 1 0 .
 eq JMP = 0 0 0 0 1 0 1 1 .
 eq NOP = 0 0 0 0 0 0 0 0 .

 eq NOPWORD = 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 .

endfm

*** Functional Units

fmod FUNCTIONAL-UNITS is
 protecting MEM .
 protecting REG .
 protecting INSTRUCTION-SET .

 sort FeState .
 sort ExState .
 sort WbState .

*** FETCH OPS

 op (_,_,_,_) : Mem Word Word Word -> FeState .

 op pm_ : FeState -> Mem .
 ops pc_ cir_ pir_ : FeState -> Word .

 op feu : Int FeState ExState WbState -> FeState .

 op fenext : FeState ExState WbState -> FeState .

*** EXECUTE OPS

 *** Result, Taken Flag, WBFlag, MemWBLoc, RegWBLoc
 op (_,_,_,_,_) : Word Bool Int Word OpField -> ExState .

 op exu : Int FeState ExState WbState -> ExState .

 op exnext : FeState ExState WbState -> ExState .

 ops result_ memwbloc_ : ExState -> Word .
 op taken_ : ExState -> Bool .
 op wbflag_ : ExState -> Int .
 op regwbloc : ExState -> OpField .

*** WRITEBACK OPS

 op (_,_) : Mem Reg -> WbState .

 op dm_ : WbState -> Mem .
 op reg_ : WbState -> Reg .

 op wbu : Int FeState ExState WbState -> WbState .

 op wbnext : FeState ExState WbState -> WbState .

*** FETCH VARIABLES

 var PM : Mem .
 var PC PIR CIR : Word .

 var feS : FeState . *** state
 var T : Int . *** time

*** EXECUTE VARIABLES

 var TAKEN : Bool .
 var WBFLAG : Int . *** 0 = no writeback, 1 = mem, 2 = reg
 var RESULT MEMWBLOC : Word .
 var REGWBLOC : OpField .

 var exS : ExState . *** state

*** WRITEBACK VARIABLES

 var wbS : WbState . *** state
 var DM : Mem .
 var REG : Reg .

*** FETCH EQUATIONS

 eq pm(PM,PC,CIR,PIR) = PM .
 eq pc(PM,PC,CIR,PIR) = PC .
 eq cir(PM,PC,CIR,PIR) = CIR .
 eq pir(PM,PC,CIR,PIR) = PIR .

 *** iterated map
 eq feu(0,feS,exS,wbS) = feS .
 eq feu(T,feS,exS,wbS) = fenext(feu(T - 1,feS,exS,wbS),exu(T - 1,feS,exS,wbS),wbu(T - 1,feS,exS,wbS)) [owise] .

 ceq fenext((PM,PC,CIR,PIR),(RESULT,TAKEN,WBFLAG,MEMWBLOC,REGWBLOC),(DM,REG)) = (PM,PC + Four,PM [PC] ,CIR)

 if opcode(cir(PM,PC,CIR,PIR)) =/ = JMP .
 ceq fenext((PM,PC,CIR,PIR),(RESULT,TAKEN,WBFLAG,MEMWBLOC,REGWBLOC),(DM,REG)) = (PM,PC + Four,PM [PC] ,CIR)

 if opcode(cir(PM,PC,CIR,PIR)) == JMP and taken(RESULT,TAKEN,WBFLAG,MEMWBLOC,REGWBLOC) == false .
 ceq fenext((PM,PC,CIR,PIR),(RESULT,TAKEN,WBFLAG,MEMWBLOC,REGWBLOC),(DM,REG)) = (PM,REG [regc(CIR)],PM[REG[regc(CIR)]] ,CIR)

 if opcode(cir(PM,PC,CIR,PIR)) == JMP and taken(RESULT,TAKEN,WBFLAG,MEMWBLOC,REGWBLOC) == true .

*** EXECUTE EQUATIONS

 eq result(RESULT,TAKEN,WBFLAG,MEMWBLOC,REGWBLOC) = RESULT .
 eq taken(RESULT,TAKEN,WBFLAG,MEMWBLOC,REGWBLOC) = TAKEN .
 eq wbflag(RESULT,TAKEN,WBFLAG,MEMWBLOC,REGWBLOC) = WBFLAG .
 eq memwbloc(RESULT,TAKEN,WBFLAG,MEMWBLOC,REGWBLOC) = MEMWBLOC .
 eq regwbloc(RESULT,TAKEN,WBFLAG,MEMWBLOC,REGWBLOC) = REGWBLOC .

 *** iterated map
 eq exu(0,feS,exS,wbS) = exS .
 eq exu(T,feS,exS,wbS) = exnext(feu(T - 1,feS,exS,wbS),exu(T - 1,feS,exS,wbS),wbu(T - 1,feS,exS,wbS)) [owise] .

 *** define instructions

 *** NOP (opcode = 0)
 ceq exnext((PM,PC,CIR,PIR),(RESULT,TAKEN,WBFLAG,MEMWBLOC,REGWBLOC),(DM,REG)) = (NOPWORD,false , 0,NOPWORD,NOP)

 if opcode(cir(PM,PC,CIR,PIR)) == NOP .
 *** ADD (opcode = 1)
 ceq exnext((PM,PC,CIR,PIR),(RESULT,TAKEN,WBFLAG,MEMWBLOC,REGWBLOC),(DM,REG)) =
 (REG [rega(CIR)] + REG[regb(CIR)],false,2,NOPWORD,REG[regc(CIR)])

 if opcode(cir(PM,PC,CIR,PIR)) == ADD .
 *** MULT (opcode = 10)
 ceq exnext((PM,PC,CIR,PIR),(RESULT,TAKEN,WBFLAG,MEMWBLOC,REGWBLOC),(DM,REG)) =
 (REG [rega(CIR)] * REG[regb(CIR)],false,2,NOPWORD,REG[regc(CIR)])

 if opcode(cir(PM,PC,CIR,PIR)) == MULT .
 *** AND (opcode = 11)
 ceq exnext((PM,PC,CIR,PIR),(RESULT,TAKEN,WBFLAG,MEMWBLOC,REGWBLOC),(DM,REG)) =
 (REG [rega(CIR)] & REG[regb(CIR)],false,2,NOPWORD,REG[regc(CIR)])

 if opcode(cir(PM,PC,CIR,PIR)) == AND .
 *** OR (opcode = 100)
 ceq exnext((PM,PC,CIR,PIR),(RESULT,TAKEN,WBFLAG,MEMWBLOC,REGWBLOC),(DM,REG)) =
 (REG [rega(CIR)] | REG[regb(CIR)],false,2,NOPWORD,REG[regc(CIR)])

 if opcode(cir(PM,PC,CIR,PIR)) == OR .
 *** NOT (opcode = 101)
 ceq exnext((PM,PC,CIR,PIR),(RESULT,TAKEN,WBFLAG,MEMWBLOC,REGWBLOC),(DM,REG)) =
 (!(REG [rega(CIR)]),false,2,NOPWORD,REG[regc(CIR)])

 if opcode(cir(PM,PC,CIR,PIR)) == NOT .
 *** SLL (opcode = 110)
 ceq exnext((PM,PC,CIR,PIR),(RESULT,TAKEN,WBFLAG,MEMWBLOC,REGWBLOC),(DM,REG)) =
 (REG [rega(CIR)] << REG[regb(CIR)],false,2,NOPWORD,REG[regc(CIR)])

 if opcode(cir(PM,PC,CIR,PIR)) == SLL .
 *** LD (opcode = 111)
 ceq exnext((PM,PC,CIR,PIR),(RESULT,TAKEN,WBFLAG,MEMWBLOC,REGWBLOC),(DM,REG)) =
 (DM [REG[rega(CIR)] + REG[regb(CIR)]],false,2,NOPWORD,REG[regc(CIR)])

 if opcode(cir(PM,PC,CIR,PIR)) == LD .
 *** ST (opcode = 1000)
 ceq exnext((PM,PC,CIR,PIR),(RESULT,TAKEN,WBFLAG,MEMWBLOC,REGWBLOC),(DM,REG)) =
 (REG [rega(CIR)] + REG[regb(CIR)],false,1,REG[regc(CIR)] ,NOP)

 if opcode(cir(PM,PC,CIR,PIR)) == ST .
 *** EQ (opcode = 1001) [RA == RB]
 ceq exnext((PM,PC,CIR,PIR),(RESULT,TAKEN,WBFLAG,MEMWBLOC,REGWBLOC),(DM,REG)) =
 (constzero32, false , 2,NOPWORD,REG[regc(CIR)])

 if opcode(cir(PM,PC,CIR,PIR)) == EQ and REG[rega(CIR)] == REG[regb(CIR)] .
 *** EQ (opcode = 1001) [RA =/= RB]
 ceq exnext((PM,PC,CIR,PIR),(RESULT,TAKEN,WBFLAG,MEMWBLOC,REGWBLOC),(DM,REG)) =
 (constminus1, false , 2,NOPWORD,REG[regc(CIR)])

 if opcode(cir(PM,PC,CIR,PIR)) == EQ and REG[rega(CIR)] =/= REG[regb(CIR)] .
 *** GT (opcode = 1010) [RA > RB]
 ceq exnext((PM,PC,CIR,PIR),(RESULT,TAKEN,WBFLAG,MEMWBLOC,REGWBLOC),(DM,REG)) =
 (constzero32, false , 2,NOPWORD,REG[regc(CIR)])

 if opcode(cir(PM,PC,CIR,PIR)) == GT and REG[rega(CIR)] gt REG[regb(CIR)] .
 *** GT (opcode = 1010) [RA <= RB]
 ceq exnext((PM,PC,CIR,PIR),(RESULT,TAKEN,WBFLAG,MEMWBLOC,REGWBLOC),(DM,REG)) =
 (constminus1, false , 2,NOPWORD,REG[regc(CIR)])

 if opcode(cir(PM,PC,CIR,PIR)) == GT and not REG[rega(CIR)] gt REG[regb(CIR)] .
 *** JMP (opcode = 1011) [branch not taken]
 ceq exnext((PM,PC,CIR,PIR),(RESULT,TAKEN,WBFLAG,MEMWBLOC,REGWBLOC),(DM,REG)) =
 (constzero32, false , 0,NOPWORD,NOP)

 if opcode(cir(PM,PC,CIR,PIR)) == JMP and REG[rega(CIR)] =/= REG[constzero8] .
 *** JMP (opcode = 1011) [branch taken]
 ceq exnext((PM,PC,CIR,PIR),(RESULT,TAKEN,WBFLAG,MEMWBLOC,REGWBLOC),(DM,REG)) =
 (PC + Four, true , 2,NOPWORD,REG[regb(CIR)])

 if opcode(cir(PM,PC,CIR,PIR)) == JMP and REG[rega(CIR)] == REG[constzero8] .

*** WRITEBACK EQUATIONS

 eq dm(DM,REG) = DM .
 eq reg(DM,REG) = REG .

 eq wbu(0,feS,exS,wbS) = wbS .
 eq wbu(T,feS,exS,wbS) = wbnext(feu(T - 1,feS,exS,wbS),exu(T - 1,feS,exS,wbS),wbu(T - 1,feS,exS,wbS)) [owise] .

 ceq wbnext((PM,PC,CIR,PIR),(RESULT,TAKEN,WBFLAG,MEMWBLOC,REGWBLOC),(DM,REG)) =
 (DM [result(RESULT,TAKEN,WBFLAG,MEMWBLOC,REGWBLOC) / memwbloc(RESULT,TAKEN,WBFLAG,MEMWBLOC,REGWBLOC)]
 if wbflag(RESULT,TAKEN,WBFLAG,MEMWBLOC,REGWBLOC) == 1 .
 ceq wbnext((PM,PC,CIR,PIR),(RESULT,TAKEN,WBFLAG,MEMWBLOC,REGWBLOC),(DM,REG)) =
 (DM,REG [result(RESULT,TAKEN,WBFLAG,MEMWBLOC,REGWBLOC) / regwbloc(RESULT,TAKEN,WBFLAG,MEMWBLOC,REGWBLOC)]
 if wbflag(RESULT,TAKEN,WBFLAG,MEMWBLOC,REGWBLOC) == 2 .

endfm

*** Pipeline

*** This is the "main" function, where we define the state funtion pmp and the
*** next-state function pnext.

fmod PMP is
 protecting FUNCTIONAL-UNITS .

 sort PState .

 op (_,_,_) : FeState ExState WbState -> PState .
 op pmp : Int PState -> PState .
 op pnext : PState -> PState .

 op fetchunit_ : PState -> FeState .
 op executeunit_ : PState -> ExState .

 op writebackunit_ : PState -> WbState .

 var FETCHUNIT : FeState .
 var EXECUTEUNIT : ExState .
 var WRITEBACKUNIT : WbState .

 var PMP : PState .
 var Time : Int .

 eq fetchunit(FETCHUNIT,EXECUTEUNIT,WRITEBACKUNIT) = FETCHUNIT .
 eq executeunit(FETCHUNIT,EXECUTEUNIT,WRITEBACKUNIT) = EXECUTEUNIT .
 eq writebackunit(FETCHUNIT,EXECUTEUNIT,WRITEBACKUNIT) = WRITEBACKUNIT .

 eq pmp(0,PMP) = PMP .
 eq pmp(Time,PMP) = pnext(pmp(Time - 1,PMP)) [owise] .

 eq pnext(FETCHUNIT,EXECUTEUNIT,WRITEBACKUNIT) =
 (fenext(FETCHUNIT,EXECUTEUNIT,WRITEBACKUNIT),
 exnext(FETCHUNIT,EXECUTEUNIT,WRITEBACKUNIT),

 wbnext(FETCHUNIT,EXECUTEUNIT,WRITEBACKUNIT)) .

endfm

*** The final module is to define an actual program and run it.

fmod RUNPROGS is
 protecting PMP . *** import the microprocessor representation

 ops Dm Pm : -> Mem .
 op Rg : -> Reg .
 ops Pc Pir Cir Res : -> Word .
 op Tk : -> Bool .
 op Wflag : -> Int .
 op Wmemloc : -> Word .
 op Wregloc : -> OpField .

 *** Set the values to zero
 eq Pc = constzero32 .
 eq Cir = constzero32 .
 eq Pir = constzero32 .
 eq Res = constzero32 .
 eq Wmemloc = constzero32 .
 eq Tk = false .
 eq Wflag = 0 .
 eq Wregloc = constzero8 .

 *** R1 = 1
 eq Rg [0 0 0 0 0 0 0 1] =
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 1 .

 *** R2 = 0
 eq Rg [0 0 0 0 0 0 1 0] =
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 .

 *** R13 = 252
 eq Rg [0 0 0 0 1 1 0 1] =
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 1 1 1 1 1 1 0 0 .

 *** Mem[1] = 6
 eq Dm[0 1] =
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 1 1 0 .

 *** Mem[2] = 5
 eq Dm[0 1 0] =
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 1 0 1 .

 *** INST 1 [Load (RG1+RG1) into RG3] -> Mem[2] = 5
 eq Pm[0 0] =
 0 0 0 0 0 1 1 1 *** LOAD
 0 0 0 0 0 0 0 1 *** RG1
 0 0 0 0 0 0 0 1 *** RG1
 0 0 0 0 0 0 1 1 . *** RG3

 *** INST 2 [Load (RG1+RG2) into RG4] -> Mem[2] = 5
 eq Pm[0 1 0 0] =
 0 0 0 0 0 1 1 1 *** LOAD
 0 0 0 0 0 0 0 1 *** RG1
 0 0 0 0 0 0 0 1 *** RG1
 0 0 0 0 0 1 0 0 . *** RG4

 *** INST 3 [Shift left R3 by R4 and store in R5]
 eq Pm[0 1 0 0 0] =
 0 0 0 0 0 1 1 0 *** SHIFTL
 0 0 0 0 0 0 1 1 *** RG3
 0 0 0 0 0 1 0 0 *** RG4
 0 0 0 0 0 1 0 1 . *** RG5

 *** INST 4 [Store RG5 in Mem[RG2+RG3]] -> Mem[5] = 160
 eq Pm[0 1 1 0 0] =
 0 0 0 0 1 0 0 0 *** STORE
 0 0 0 0 0 0 1 0 *** RG2
 0 0 0 0 0 0 1 1 *** RG3
 0 0 0 0 0 1 0 1 . *** RG5

 *** INST 5 [Add RG3 and RG4 and store in RG6] -> RG[6] = 10
 eq Pm[0 1 0 0 0 0] =
 0 0 0 0 0 0 0 1 *** ADD
 0 0 0 0 0 0 1 1 *** RG3
 0 0 0 0 0 1 0 0 *** RG4
 0 0 0 0 0 1 1 0 . *** RG6

 *** INST 6 [Mult RG3 by RG4 and store in RG7] -> RG[7] = 25
 eq Pm[0 1 0 1 0 0] =
 0 0 0 0 0 0 1 0 *** MULT

 0 0 0 0 0 0 1 1 *** RG3
 0 0 0 0 0 1 0 0 *** RG4
 0 0 0 0 0 1 1 1 . *** RG7

 *** INST 7 [Bitwise and of RG3 and RG4, stored in RG8] -> RG[8] = 5
 eq Pm[0 1 1 0 0 0] =
 0 0 0 0 0 0 1 1 *** AND
 0 0 0 0 0 0 1 1 *** RG3
 0 0 0 0 0 1 0 0 *** RG4
 0 0 0 0 1 0 0 0 . *** RG8

 *** INST 8 [Bitwise or of RG3 and RG4, stored in RG9] -> RG[9] = 5
 eq Pm[0 1 1 1 0 0] =
 0 0 0 0 0 1 0 0 *** OR
 0 0 0 0 0 0 1 1 *** RG3
 0 0 0 0 0 1 0 0 *** RG4
 0 0 0 0 1 0 0 1 . *** RG9

 *** INST 9 [Inverse of RG3, stored in R10]
 eq Pm[0 1 0 0 0 0 0] =
 0 0 0 0 0 1 0 1 *** NOT
 0 0 0 0 0 0 1 1 *** RG3
 0 0 0 0 0 0 0 0 *** RG0
 0 0 0 0 1 0 1 0 . *** RG10

 *** INST 10 [Test if RG7 = RG8] -> RG[7] = 25, RG[8] = 5, Answer = -1 (false)
 eq Pm[0 1 0 0 1 0 0] =
 0 0 0 0 1 0 0 1 *** EQ
 0 0 0 0 0 1 1 1 *** RG7
 0 0 0 0 1 0 0 0 *** RG8
 0 0 0 0 1 0 1 1 . *** R11

 *** INST 11 [Test if R11 == 0] -> false, no jump
 eq Pm[0 1 0 1 0 0 0] =
 0 0 0 0 1 0 1 1 *** JMP
 0 0 0 0 1 0 1 1 *** R11
 0 0 0 0 1 1 0 0 *** R12
 0 0 0 0 1 1 0 1 . *** R13

 *** INST 12 [Test if RG7 > RG8] -> RG[7] = 25, RG[8] = 5, Answer = 0 (true)
 eq Pm[0 1 0 1 1 0 0] =
 0 0 0 0 1 0 1 0 *** GT
 0 0 0 0 0 1 1 1 *** RG7
 0 0 0 0 1 0 0 0 *** RG8
 0 0 0 0 1 0 1 1 . *** RG11

 *** INST 13 [Test if RG11 == 0] -> true, jump to R13, store PC+4 in RG12
 eq Pm[0 1 1 0 0 0 0] =
 0 0 0 0 1 0 1 1 *** JMP
 0 0 0 0 1 0 1 1 *** RG11
 0 0 0 0 1 1 0 0 *** RG12
 0 0 0 0 1 1 0 1 . *** RG13

 *** INST 14 [Subroutine][Add RG3 to RG4 and store in RG14] -> R[14] = 10
 eq Pm[0 1 1 1 1 1 1 0 0] =
 0 0 0 0 0 0 0 1 *** ADD
 0 0 0 0 0 0 1 1 *** RG3
 0 0 0 0 0 1 0 0 *** RG4
 0 0 0 0 1 1 1 0 . *** RG14

 *** INST 15 [Test if R11 == 0] -> True, jump back to R[12]
 eq Pm[0 1 0 0 0 0 0 0 0 0] =
 0 0 0 0 1 0 1 1 *** JMP
 0 0 0 0 1 0 1 1 *** RG11
 0 0 0 0 1 1 1 1 *** RG15
 0 0 0 0 1 1 0 0 . *** RG12

 *** INST 16 [Return from subroutine] [Add R7 to R8 and store in R16] -> R[16] = 25 + 5 =30
 eq Pm[0 1 1 0 1 0 0] =
 0 0 0 0 0 0 0 0 *** ADD
 0 0 0 0 0 1 1 1 *** RG7
 0 0 0 0 1 0 0 0 *** RG8
 0 0 0 1 0 0 0 0 . *** R16
endfm

*** Now run the program

reduce pmp(1, ((Pm,Pc,Cir,Pir),(Res,Tk,Wflag,Wmemloc,Wregloc),(Dm,Rg))) .
reduce pmp(2, ((Pm,Pc,Cir,Pir),(Res,Tk,Wflag,Wmemloc,Wregloc),(Dm,Rg))) .
reduce pmp(3, ((Pm,Pc,Cir,Pir),(Res,Tk,Wflag,Wmemloc,Wregloc),(Dm,Rg))) .
reduce pmp(4, ((Pm,Pc,Cir,Pir),(Res,Tk,Wflag,Wmemloc,Wregloc),(Dm,Rg))) .
reduce pmp(5, ((Pm,Pc,Cir,Pir),(Res,Tk,Wflag,Wmemloc,Wregloc),(Dm,Rg))) .
reduce pmp(6, ((Pm,Pc,Cir,Pir),(Res,Tk,Wflag,Wmemloc,Wregloc),(Dm,Rg))) .
reduce pmp(7, ((Pm,Pc,Cir,Pir),(Res,Tk,Wflag,Wmemloc,Wregloc),(Dm,Rg))) .
reduce pmp(8, ((Pm,Pc,Cir,Pir),(Res,Tk,Wflag,Wmemloc,Wregloc),(Dm,Rg))) .
reduce pmp(9, ((Pm,Pc,Cir,Pir),(Res,Tk,Wflag,Wmemloc,Wregloc),(Dm,Rg))) .
reduce pmp(10 , ((Pm,Pc,Cir,Pir),(Res,Tk,Wflag,Wmemloc,Wregloc),(Dm,Rg))) .
reduce pmp(11 , ((Pm,Pc,Cir,Pir),(Res,Tk,Wflag,Wmemloc,Wregloc),(Dm,Rg))) .
reduce pmp(12 , ((Pm,Pc,Cir,Pir),(Res,Tk,Wflag,Wmemloc,Wregloc),(Dm,Rg))) .
reduce pmp(13 , ((Pm,Pc,Cir,Pir),(Res,Tk,Wflag,Wmemloc,Wregloc),(Dm,Rg))) .
reduce pmp(14 , ((Pm,Pc,Cir,Pir),(Res,Tk,Wflag,Wmemloc,Wregloc),(Dm,Rg))) .
reduce pmp(15 , ((Pm,Pc,Cir,Pir),(Res,Tk,Wflag,Wmemloc,Wregloc),(Dm,Rg))) .
reduce pmp(16 , ((Pm,Pc,Cir,Pir),(Res,Tk,Wflag,Wmemloc,Wregloc),(Dm,Rg))) .
q

