
References

There are very many algorithms textbooks in print.
The one I shall regularly refer to (as CLRS) is:

Introduction to Algorithms (Second Edition)
by Cormen, Leiserson, Rivest and Stein,
The MIT Press, 2001.

Two others worth exploring for this course:

Fundamentals of Algorithmics
by Brassard and Bratley,
Prentice Hall, 1996.

Algorithmics: The Spirit of Computing (Third Edition)
by Harel and Feldman,
Addison Wesley, 2004.

1

Readings from CLRS

Introduction (Slides 3-17)

Chapters 1-3

Divide-and-Conquer (Slides 18–41)

Chapter 4 (not Section 4.4).
Chapter 28, Section 28.2.
Chapter 33, Section 33.4.

Greedy Algorithms (Slides 42–62)

Chapter 16, Sections 16.1–16.3.
Chapter 23, Section 23.2 (pp 567-570).

Dynamic Programming (Slides 63–80)

Chapter 15.
Chapter 25, pp 620-622 and Section 25.2.

2

Mathematical Functions

I shall assume you are comfortable with standard math functions, like
exponentiation bx and its inverse logb x.

logb a is the number x such that bx = a.

We shall usually work with binary logarithms lg x = log2 x.

Some Useful Identities
logb(xy) = logb x + logb y logb(xy) = y logb x

logb x
logc x

= logb c

We shall often use floor bxc and ceiling dxe functions:

bxc is the largest integer ≤ x, e.g., b5.3c = 5

dxe is the smallest integer ≥ x, e.g., d5.3e = 6

as well as summation notation:
n∑

i=1

ai = a1 + a2 + a2 + · · · + an.

3

Basic Definitions

Model of Computation: An abstract sequential computer called a
Random Access Machine (RAM).

Computational Problem: A specification in general terms of inputs and
outputs and the desired input/output relationship.

Problem Instance: An actual set of inputs for a given problem.

Algorithm: A method of solving a problem which can be implemented
on a computer (in particular, a RAM).

• A program is a particular implementation of some algorithm.
A program is not the same as an algorithm.

(In this course, you shall not be implementing any algorithms.)

• There will always be many different algorithms for any given
problem.

4

How to describe an algorithm

Pseudocode notation

• Similar to any typical imperative programming language, such as
Pascal, C, Modula, ...

• Liberal use of English.

• Use of indentation for block structure.

• Employs any clear and concise expressive methods.

• Typically not concerned with software engineering issues such as:

∗ error handling.
∗ data abstraction.
∗ modularity.

5

An Example Algorithm

Problem: Sorting (numbers).
Input: A sequence of n numbers 〈a1, a2, . . . , an 〉.

Output: A permutation (reordering) 〈a ′

1, a ′

2, . . . a ′

n 〉 of the input
such that a ′

1 ≤ a ′

2 ≤ . . . ≤ a ′

n.

INSERTION-SORT(A)

1 for j← 2 to length(A) do
2 key← A[j]

3 . Insert A[j] into sorted sequence A[1. . j−1].
4 i← j−1

5 while i > 0 and A[i] > key do
6 A[i+1]← A[i]

7 i← i−1

8 A[i+1]← key

6

Algorithm Analysis

Predicting the amount of resource required from the size of the input.

We must have some quantity to count. Typically:

• runtime.

• memory.

• number of basic operations, such as:
– arithmetic operations (eg, for multiplying matrices).
– bit operations (eg, for multiplying integers).
– comparisons (eg, for sorting and searching).

Types of Analysis:

• worst-case.

• average-case.

• best-case.

7

Various Runtime Bounds

Given a problem, a function T(n) reflecting its runtime (as a function of
input size) is an:

Upper Bound: if there is an algorithm which solves the problem and
has worst–case runtime T(n).

Average–case bound: if there is an algorithm which solves the problem
and has average–case runtime T(n).

Lower Bound: if every algorithm which solves the problem must use at
least T(n) time on some instance of size n for infinitely many n.

8

Two Revealing Tables
Time to solve a problem instance of size n using a T(n)-time algorithm.

T(n) n=10 n=20 n=50 n=100 n=500 n=1000

n lg n 33 µs 86 µs 282 µs 664 µs 4.5 ms 10 ms

n2 100 µs 400 µs 2.5 ms 10 ms 250 ms 1 s

2n 1 ms 1 s 36 yr 1016 yr 10137 yr 10287 yr

n! 4 s 105 yr 1051 yr 10144 yr 101120 yr 102554 yr

Largest problem instance solvable in 1 minute.

T(n) 2× faster machine 103
× faster machine

n lg n 3.9×106 7.5×106 2.7×109

n2 7 745 10 954 244 948

2n 25 26 35

n! 11 11 13

9

Analyzing Algorithms:
How not to do it

INSERTION-SORT(A) cost repetitions
1 for j← 2 to length(A) do c1 n

2 key← A[j] c2 n−1

3 . Insert A[j] into sorted sequence A[1. . j − 1]. 0 n−1

4 i← j−1 c4 n−1

5 while i > 0 and A[i] > key do c5

∑n

j=2
tj

6 A[i+1]← A[i] c6

∑n

j=2
(tj−1)

7 i← i−1 c7

∑n

j=2
(tj−1)

8 A[i+1]← key c8 n−1

where:
• n = length(A), and

• tj = number of times the while-loop test in line 5 is executed in
the jth iteration of the for-loop.

10

The Exact Analysis
Best possible situation: tj = 1 for all j, i.e., when A is already sorted.

Runtime: (c1 + c2 + c4 + c5 + c8)n

− (c2 + c4 + c5 + c8).

Worst possible situation: tj = j for all j, i.e., when A is sorted in
reverse order.
Runtime: (c5

2
+ c6

2
+ c7

2
)n2

+ (c1 + c2 + c4 + c5

2
− c6

2
− c7

2
+ c8)n

− (c2 + c4 + c5 + c8).

Average situation: tj = j
2

for all j, i.e., every permutation is equally
likely, so expected value of tj is j

2
.

Runtime: (c5

4
+ c6

4
+ c7

4
)n2

+ (c1 + c2 + c4 + c5

4
− 3c6

4
− 3c7

4
+ c8)n

− (c2 + c4 + c5

2
− c6

2
− c7

2
+ c8).

11

Growth of Functions

We consider only functions f, g : N→ R
≥0

.

O-notation: O
(

g(n)
)

is the set of all functions f(n) for which there are
positive constants c and n0 such that

f(n) ≤ cg(n) for all n ≥ n0.

Ω-notation: Ω
(

g(n)
)

is the set of all functions f(n) for which there are
positive constants c and n0 such that

f(n) ≥ cg(n) for all n ≥ n0.

Θ-notation: Θ
(

g(n)
)

is the set of all functions f(n) for which there are
positive constants c1, c2 and n0 such that

c1g(n) ≤ f(n) ≤ c2g(n) for all n ≥ n0.

12

Picturing Asymptotic Growth

cg(n)

f(n)

n
n0

cg(n)

f(n)

n
n0

f(n) = O
(

g(n)
)

f(n) = Ω
(

g(n)
)

c2g(n)

c1g(n)

f(n)

n
n0

f(n) = Θ
(

g(n)
)

13

Useful (abuse of) notation

We write

f(n) = O
(

g(n)
)

to mean

f(n) ∈ O
(

g(n)
)

.

Similarly for Ω and Θ.

Very useful, eg:

5n3 + 2n − 4 = 5n3 + Θ(n) = Θ(n3).

Note:
m∑

i=1

O(i5) means
m∑

i=1

f(i) for some f(n) ∈ O(n5).

It does not mean O(15) + O(25) + · · · + O(m5).

14

Example Analysis

INSERTION-SORT(A)

1 for j← 2 to length(A) do
2 key← A[j]

3 . Insert A[j] into sorted sequence A[1. . j−1].
4 i← j−1

5 while i > 0 and A[i] > key do
6 A[i+1]← A[i]

7 i← i−1

8 A[i+1]← key

The for-loop on line 1 is executed O(n) times; and each statement costs
constant time, except for the while-loop on lines 5-7 which costs O(n).

Thus overall runtime is: O(n) × O(n) = O(n2).

Note: In fact, the worst-case runtime is Θ(n2).

15

Another Example

Problem: Evaluating Polynomials.
Input: A sequence a = 〈a0, a1, . . . , an〉 of real values,

and a real value x.
Output: The value of the nth-degree polynomial

A(x) = a0 + a1x + a2x2 + · · · + anxn.

POLY-EVAL(a, x)

1 xi← 1

2 result← a0

3 for i← 1 to n do
4 xi← xi × x . xi = xi

5 result← result + ai × xi

6 return result

This naı̈ve algorithm performs 2n multiplications and n additions.

Can we do better? Yes!

16

A Better Solution
Horner’s Rule expresses the polynomial A(x) as:

A(x) = a0 + x(a1 + · · · + x(an−1 + x(an)) · · ·).

This gives rise to the following algorithm for computing A(x).

HORNER(a, x)

1 result← an

2 for i← n−1 downto 0 do
3 result← result × x + ai

4 return result

This algorithm performs n additions and n multiplications.

Note: It can be shown that at least n additions and n multiplications are
necessary in the worst case to evaluate A(x) for any arithmetic-based
algorithm: this is thus a lower bound on the problem.

Hence this algorithm is provably optimal.

17

Divide-and-Conquer
Principle: Divide a problem into simpler subproblems, and solve the
subproblems recursively.

Example: Find the minimum and maximum of a list A of n>0 numbers.

NAIVE-MIN-MAX(A)

1 least← A[1]

2 for i← 2 to length(A) do
3 if A[i] < least then least← A[i]

4 greatest← A[1]

5 for i← 2 to length(A) do
6 if A[i] > greatest then greatest← A[i]

7 return (least, greatest)

The for-loop on line 2 makes n−1 comparisons, as does the for-loop on
line 5, making a total of 2n−2 comparisons.

Can we do better? Yes!

18

Divide-and-Conquer Min-Max

Initially called with MIN-MAX
(

A, 1, length(A)
)

.

MIN-MAX(A, p, q)

1 if p = q then return (A[p], A[q])

2 if p = q − 1 then
3 if A[p] < A[q] then return (A[p], A[q])

4 else return (A[q], A[p])

5 r← b(p + q)/2c
6 (min1, max1)← MIN-MAX(A, p, r)

7 (min2, max2)← MIN-MAX(A, r+1, q)

8 return
(

min(min1, min2), max(max1, max2)
)

Let T(n) be the number of comparisons made by MIN-MAX(A, p, q),
where n = q−p+1. Then T(1) = 0, T(2) = 1, and for k > 2:

T(k) = T (dk/2e) + T (bk/2c) + 2.

19

Solving the Min-Max Recurrence

Claim: T(n) = 3
2
n − 2 for n = 2k ≥ 2 a power of 2.

Proof: By induction on n.
Base case: true for n=2, as T(2) = 1 = 3

2
· 2 − 2.

Induction step: assuming T(n
2
) = 3

2
(n

2
) − 2,

T(n) = 2T(n
2
) + 2 = 2

(

3
2
(n

2
) − 2

)

+ 2 = 3
2
n − 2 �

Note: If we replace line 5 of the algorithm by r← p+1, then the
resulting runtime T ′(n) satisfies T ′(n) =

⌈

3n
2

⌉

−2 for all n > 0.

(For example, T ′(6) = 7 whereas T(6) = 8.)

Note: It can be shown that at least
⌈

3n
2

⌉

− 2 comparisons are necessary
in the worst case to find the maximum and minimum of n numbers
for any comparison-based algorithm: this is thus a lower bound on
the problem.

Hence this (last) algorithm is provably optimal.

20

Another Example: Merge-Sort

MERGE-SORT(A, p, r)

1 if p < r then
2 q← b(p + r)/2c
3 MERGE-SORT(A, p, q)

4 MERGE-SORT(A, q + 1, r)

5 MERGE(A, p, q, r)

The runtime T(n), where n = r−p+1 > 1, satisfies:

T(n) = 2T(n/2) + Θ(n)

We can show that T(n) = Θ(n lg n).

Note: It can be shown that Ω(n lg n) comparisons are necessary in the
worst case to sort n numbers for any comparison-based algorithm:
this is thus an (asymptotic) lower bound on the problem.

Hence this algorithm is provably (asymptotically) optimal.

21

Another Example: Closest-Points

Input: A set P of n≥2 points p = (x, y).

Output: The two points p
1

= (x
1
, y

1
) and p

2
= (x

2
, y

2
)

which are closest together, that is, which minimize

d(p
1
, p

2
) =

√

(x
1
−x

2
)2 + (y

1
−y

2
)2.

The naı̈ve algorithm for computing this computes the distance between all
n(n−1)

2
pairs, and thus runs in time O(n2).

Can we do better? Yes!

22

Divide-and-Conquer Closest Points
1. Sort the points P by their x coordinates, and recursively solve the

problem for the points in the left and right halves (P
L

and P
R

,
respectively):

δ

2δ

`

?

�-

If the minimum distance found on either side is δ, any closer pair of
points must lie within the central 2δ strip.

2. Look in the central 2δ strip for a closer pair.

It may be that all of the points lie in this strip; hence naı̈vely we may
still need to check n/2 × n/2 = O(n2) pairs.

23

The Conquer Step
If p ∈ P

L
and q ∈ P

R
have distance less than δ, then they must lie within

some 2δ × δ rectangle centered somewhere on the dividing line `.
`

δ

δ δ

?

?

6

� -� -

There can be at most 8 points in such a rectangle.

(The only way to get 4 points on either half with a distance of δ between
each pair is to put them on the corners of the square. Hence we cannot fit
more than 8 points into the rectangle.)

Hence for each point in the 2δ strip, we only need to compare its distance
with the 7 points immediately above it in the strip.

24

The Closest-Pair Algorithm

CLOSEST-PAIR(P, X, Y)

1 if P = {p} then return∞
2 if P = {p, q} (p 6= q) then return d(p, q)

3 Split P according to X into equal halves P
L

and P
R

4 Split X and Y likewise into X
L

, X
R

, Y
L

and Y
R

5 δ
L
← CLOSEST-PAIR(PL, XL, YL)

6 δ
R
← CLOSEST-PAIR(PR, XR, YR)

7 δ← min(δ
L
, δ

R
)

8 P ′ ← { p ∈ Y : `−δ ≤ p
x
≤ `+δ }

9 for i← 0 to |P ′|−2 do
10 for j← i+1 to min(i+7, |P ′|−1) do
11 δ← min

(

δ, d(P ′[i], P ′[j])
)

12 return δ

The program is invoked with the list of points P, along with the list sorted
by x coordinates X and sorted by y coordinates Y.

25

Analysis of CLOSEST-PAIR

The running time T(n) for CLOSEST-PAIR (given P sorted into X and Y):

3. Split P into P
L

and P
R

O(n)

+
4. Split X and Y into X

L
, X

R
and Y

L
, YL O(n)

+
5-6. Compute δ

L
and δ

R
2T(n/2)

+
8. Create P ′ O(n)

+
9-11. Compute minimum distance O(n)

Hence, T(n) = 2T(n/2) + O(n).

We can show that this gives T(n) = O(n lg n).

26

Yet Another Example:
Matrix Multiplication

Input: Two n×n matrices A=(aij) and B=(bij).

Output: An n×n matrix C=(cij) where C=AB, ie, cij =

n∑

k=1

aikbkj.

The usual naı̈ve algorithm is as follows.

MATRIX-MULT(A, B)

1 for i← 1 to n do
2 for j← 1 to n do
3 cij ← 0

4 for k← 1 to n do
5 cij ← cij + aik × bkj

This algorithm requires Θ(n3) arithmetic operations.

Can we do better? Yes!

27

A Divide-and-Conquer Solution

Assume that n is a power of 2 (by padding out rows and columns with 0s).

Partition A, B and C into n
2
× n

2
matrices as such:

A =
(

a b

c d

)

B =
(

e g

f h

)

C =
(

r s

t u

)

=
(

ae+bf ag+bh

ce+df cg+dh

)

This reduces the n × n problem to 8 n
2
× n

2
problems, with an overhead

of 4
(

n
2

)2 additions.

The number T(n) of arithmetic operations used to compute C is thus:

T(n) =

{
1 if n = 1,
8T(n

2
) + n2 if n > 1.

We can show that T(n) = Θ(n3).

Hence this is asymptotically no better than the naı̈ve algorithm.

28

Strassen’s Algorithm

Recursively form the following 7 products (first performing 10
(

n
2

)2

additions):

P1 = (a+d)(e+h)

P2 = (c+d)e P5 = (a+b)h

P3 = a(g−h) P6 = (−a+c)(e+g)

P4 = d(−e+f) P7 = (b−d)(f+h)

Then with 8
(

n
2

)2 more additions, we can compute:

r = P1 + P4 − P5 + P7

s = P3 + P5

t = P2 + P4

u = P1 + P3 − P2 + P6

These are easily verified. For example,

s = ag + bh = a(g−h) + (a+b)h = P3 + P5.

29

Analysis of Strassen’s Algorithm

The number T(n) of arithmetic operations used to compute C is thus:

T(n) =

{
1 if n = 1,
7T(n

2
) + 9

2
n2 if n > 1.

We can show that T(n) = Θ(nlg 7).

Note: lg 7 ≈ 2.807. Hence we have beaten the O(n3) upper bound.

Note: In a similar fashion, if we can multiply k × k matrices using m

multiplications (not assuming commutativity of multiplication), then
we can multiply n × n matrices in time O(nlogk m).

Note: The best known algorithm runs in time O(n2.376).

Note: The best known asymptotic lower bound is Ω(n2). (This is a
trivial result, as there are n2 entries cij to compute.)

30

Solving Recurrences:
The Substitution Method

Guess an asymptotic bound and verify the guess with an induction proof.

For example, a good guess for

T(n) = 2T(bn/2c) + n

would be

T(n) = O(n lg n).

We can then show by induction that for some appropriately-chosen
positive constants c and n0,

T(n) ≤ cn lg n for all n ≥ n0.

Note: The constants c and n0 would need to be discovered in the
process of carrying out the induction proof, and would rely on the
boundary value T(1).

31

Example

Given T(n) = 4T(n/2) + n, we might guess that T(n) = O(n3).

To demonstrate this, we want to show that

T(n) ≤ cn3 for all n ≥ n0,

where c and n0 are as yet unspecified.

Assuming that T(k) ≤ ck3 for all k < n,

T(n) = 4T(n/2) + n

≤ 4c(n/2)3 + n

= c
2
n3 + n

= cn3 −
(

c
2
n3 − n

)

≤ cn3 if c ≥ 2 and n ≥ 1.

We also need T(1) ≤ c · 13, so we set:

c = max
(

2, T(1)
)

and n0 = 1.

32

A Better Guess

In fact, T(n) = O(n2), but the proof is trickier.

Suppose we try to demonstrate that

T(n) ≤ cn2 for all n ≥ n0,

where c and n0 are as yet unspecified.

Assuming that T(k) ≤ ck2 for all k < n,

T(n) = 4T(n/2) + n

≤ 4c(n/2)2 + n

= cn2 + n

6≤ cn2 for any c ≥ 0.

What went wrong?

We must strengthen the inductive hypothesis, by subtracting a
lower-order term.

33

Another Attempt
We try instead to demonstrate that

T(n) ≤ cn2 − dn for all n ≥ n0,

where c, d and n0 are as yet unspecified.

Assuming that T(k) ≤ ck2 − dk for all k < n,

T(n) = 4T(n/2) + n

≤ 4
(

c(n/2)2 − d(n/2)
)

+ n

= cn2 − 2dn + n

= cn2 − dn − (dn − n)

≤ cn2 − dn if d ≥ 1.

So we can choose d = 1.

We also need T(1) ≤ c · 12 − 1 · 1, so we set:

c = max(1, T(1) + 1) and n0 = 1.

34

Solving Recurrences:
The Iteration Method

Unfold the recurrence and look for a pattern.

For our example, we might proceed as follows:

T(n) = n + 4T(n/2)

= n + 4(n/2 + 4T(n/4))

= n + 2n + 42(n/4 + 4T(n/8))

= n + 2n + 4n + 43(n/8 + 4T(n/16))

= n + 2n + · · · + 2lg n−1n + 4lg nT(1)

= n(1 + 2 + 4 + · · · + 2lg n−1) + n2Θ(1)

= n(2lg n − 1) + Θ(n2)

= n2 − n + Θ(n2)

= Θ(n2)

35

Solving Recurrences:
Recursion Trees

Draw the unfoldings of the recurrence

T(n) = n + 4T(n/2).

T(n)

T(n
2
) T(n

2
) T(n

2
) T(n

2
)

n

· · · · · · · · ·

n
4

n
4

n
4

n
4

n
4

n
4

n
4

n
4

n
4

n
4

n
4

n
4

n
4

n
4

n
4

n
4

n
2

n
2

n
2

n
2

n

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

lg n

6

?

n

2n

4n

2lg nn

Total: Θ(2lg nn)

= Θ(n2)

...

-

-

-

-

36

Master Theorem
– Simplified Version –

Let a ≥ 1 and b > 1 and c ≥ 0 be constants.

Let T(n) be defined by the recurrence

T(n) = aT(n/b) + Θ(nc),

where n/b represents either bn/bc or dn/be.

Then T(n) is bounded asymptotically as follows:

1. If c < logb a then T(n) = Θ(nlogb a).

2. If c = logb a then T(n) = Θ(nc lg n).

3. If c > logb a then T(n) = Θ(nc).

(General version: CLRS, Thm 4.1, p73.)

37

Using the Master Theorem

• The runtime for MIN-MAX satisfies the recurrence:

T(n) = 2T(n/2) + Θ(1).

The Master Theorem (case 1) applies:

a = b = 2 and c = 0 < 1 = logb a,

giving T(n) = Θ(nlogb a) = Θ(n).

• The runtime for MERGE-SORT satisfies the recurrence:

T(n) = 2T(n/2) + Θ(n).

The Master Theorem (case 2) applies:

a = b = 2 and c = 1 = logb a,

giving T(n) = Θ(nc lg n) = Θ(n lg n).

38

More Examples:
Matrix Multiplication

• The runtime for MATRIX-MULT satisfies the recurrence:

T(n) = 8T(n/2) + n2.

The Master Theorem (case 1) applies:

a = 8, b = 2 and c = 2 < 3 = logb a,

giving T(n) = Θ(nlogb a) = Θ(n3).

• Strassen’s Algorithm satisfies the recurrence:

T(n) = 7T(n/2) + Θ(n2).

The Master Theorem (case 1) applies:

a = 7, b = 2 and c = 2 < logb a ≈ 2.801,

giving T(n) = Θ(nlogb a) = Θ(nlog2 7).

39

What’s Happening
For the recurrences:

T1(n) = 4T(n/2) + n

T2(n) = 4T(n/2) + n2

T3(n) = 4T(n/2) + n3

The Master Theorem (case i) applies:

a = 4 and b = 2 (so logb a = 2), and c = i,

giving

T1(n) = Θ(n2), T2(n) = Θ(n2 lg n), and T3(n) = Θ(n3).

Case 1: applies if the overhead cost (nc) is negligible compared to the
number and size of the subproblems.

Case 2: applies if the overhead cost (nc) is as costly as the subproblems.

Case 3: applies if the overhead cost (nc) is the dominating factor.

40

The General Picture

(n

b2
)c (n

b2
)c (n

b2
)c (n

b2
)c (n

b2
)c (n

b2
)c (n

b2
)c (n

b2
)c (n

b2
)c

(n
b

)c (n
b

)c (n
b

)c

nc

...
...

...
...

...
...

...
...

...

logb n

6

?

nc

`

a
bc

´

nc

`

a
bc

´2
nc

`

a
bc

´logb n
nc

= nlogb a

...

-

-

-

-

1. If c < logb a then
“

bc

a

”

< 1, and

T(n) < nlogba

„

1+
“

bc

a

”

+
“

bc

a

”2
+ · · ·

«

= nlogba

0

@

1

1−

„

bc

a

«

1

A = Θ(nlogb a).

2. If c = logb a then
`

a
bc

´

= 1, and
T(n) = nc logb n = Θ(nc logb n).

3. If c > logb a then
`

a
bc

´

< 1, and

T(n) < nc
“

1 +
`

a
bc

´

+
`

a
bc

´2
+ · · ·

”

= nc

„

1

1−(a
bc)

«

= Θ(nc).

41

Greedy Algorithms

Idea: In order to find a globally optimal solution, repeatedly choose
locally optimal solutions.

Example Problem: Making Change.

Input: A list of integers representing coin denominations, plus another
positive integer representing an amount of money.

Output: A minimal collection of coins of the given denominations
which sum to the given amount.

Greedy Strategy: Repeatedly include in the solution the largest coin
whose value doesn’t exceed the remaining amount.

E.g.: If the denominations are (25,10,5,1) and the amount is 87, then

87 = 25 + 25 + 25 + 10 + 1 + 1.

42

Applicability of Greedy Algorithms
Greedy Algorithms don’t always work.

For example, in Making Change, if the denominations were (25,11,5,1),
then

15 = 11 + 1 + 1 + 1 + 1 = 5 + 5 + 5.

However, quite often they do, or they come close enough to the optimal
solution to make the outcome acceptable.

This, and the fact that they are quite easy to implement, make them an
attractive alternative for many hard problems.

Well-known instances of the use of Greedy Algorithms are known for the
following problems.

• Minimum Spanning Trees. (Kruskal’s Algorithm.)

• Activity Selection.
• Data Compression. (Huffman Codes.)

43

Minimum Spanning Trees (MST)

Input: An undirected connected graph G = (V, E), and a (positive)
weight w(e) ∈ R

+ on each edge e ∈ E.

Output: A subset F ⊆ E of edges which connects all of the vertices V of
G, has no cycles, and minimizes the total edge weight:

w(F) =
∑

e∈F w(e).

Example:

a

b
c

d
e

f g

7
3

4

11

12
6

2015

7

10

1

44

Kruskal’s Algorithm
The following classic algorithm due to Kruskal is a greedy algorithm.

KRUSKAL-MST(G, w)

1 sort edges E of G by nondecreasing weight w

2 F← ∅
3 for each edge e ∈ E do
4 if F ∪ {e} is acyclic then
5 F← F ∪ {e}

6 return F

At each stage, the algorithm greedily chooses the cheapest edge and adds
it to the partial solution F, provided it satisfies the acyclicity criterion.

The running time of the algorithm is dominated by the sorting of edges in
line 1∗. Hence, by using an optimal sorting algorithm, the running time of
this algorithm is Θ(E lg E).

∗assuming we can do the test in line 4 efficiently.

45

Kruskal’s Algorithm Illustrated

w(a, f) = 1

w(a, d) = 7

w(b, d) = 12

w(c, g) = 3

w(d, f) = 7

w(a, b) = 15

w(e, g) = 4

w(f, g) = 10

w(b, c) = 20

w(c, e) = 6

w(d, e) = 11

b

3
4

127

10

1

f
g

e

ca

b

3
4

127

10

1

f
g

e

ca

a c

e

gf

1
7

4
3

7

b

a
b

c

e

g
f

1

10

7
15

12

4
3 3

4

12
20

7

10

1

f
g

e

c
b

a

a
b

c

e

g
f

1

10

7

4
3 3

4
11

7

10

1

f g

e

c
b

a

a
b

c

e

gf

1
7

4
33

4

6
1

f g

e

c
b

a

3
4

1

f g

e

c
b

aa
b

c

e

gf

1 31

f g

e

c
b

a

d d d

d d d

d d d

d d d

46

Correctness of Kruskal’s Algorithm
Fact: At any time during the exectution of Kruskal’s Algorithm, F is a

subset of a MST.
Proof: By induction on |F|. This is clearly true (initially) when F = ∅.

Suppose F 6=∅, and let e=(a, b) be the most recently added edge. Let
T be a MST which (by induction) contains F−{e}. Let f be the first
edge on the (unique) path in T going from vertex a to vertex b which
is not in F−{e}, and assume that f6=e.

a be

f

We must have w(e) ≤ w(f) (for otherwise
f would have been included in F rather than
e), and hence we could get another MST by
replacing f by e in T . Hence F is a subset of
a MST. �

Corollary: Kruskal’s Algorithm computes a MST.

47

Activity Selection
Input: A set S = {1, 2, . . . , n} of n activities, each with a start time si

and a finish time fi ≥ si.

Output: A maximal-sized set of mutually-compatible activities.
(Activities i and j are compatible if the intervals [si, fi) and [sj, fj)

do not overlap.)

Example:

10 20 30 40 50 60 70 80 90 100 110 120

1
2

3
4

5
6

7
8

9

Solutions: {1, 5, 9} or {1, 6, 9} or {2, 5, 9} or {2, 6, 9}.

48

A Greedy Algorithm

GREEDY-ACTIVITY-SELECTOR(s, f)

1 sort activities so that f1 ≤ f2 ≤ · · · ≤ fn

2 A← {1} ; j← 1

3 for i← 2 to n do
4 if si ≥ fj then
5 A← A ∪ {i} ; j← i

6 return A

At each stage, the algorithm greedily chooses for inclusion in A the
earliest-finishing activity compatible with the activities already chosen.

The running time of the algorithm is dominated by the sorting of activities
in line 1, giving it a running time of Θ(n lg n) (assuming an optimal
sorting algorithm is used).

If the activities are already sorted, the algorithm (from line 2 onward)
runs in time Θ(n).

49

Correctness of the Algorithm

Fact: At any point, A is a subset of a solution.

Proof: By induction on |A|. This is clearly true (initially) when A = ∅.

Suppose A 6= ∅; let k be the most recently added activity, and B be a
solution which (by induction) contains A−{k} but not k.

By induction, the activities of A−{k} are mutually-compatible; and k,
by being added, is compatible with the activities of A−{k}. Thus the
activities of A must be mutually compatible.

Choose the i ∈ B−A with the least finish time.

We must have fk ≤ fi (for otherwise i would have been added to A

rather than k).

But then we can get another solution by replacing i by k in B. �

Corollary: The algorithm is correct.

50

When Greedy Algorithms Work
Not every optimization problem can be solved using a greedy algorithm.
(For example, Making Change with a poor choice of coins.)

There are two vital components to a problem which make a greedy
algorithm appropriate:

Greedy-choice property: A globally optimal solution to the problem
can be obtained by making a locally-optimal (greedy) choice.

(A greedy algorithm does not look ahead nor backtrack; hence a
single bad choice, no matter how attractive it was when made, will
lead to a suboptimal solution.)

Optimal substructure property: An optimal solution to the problem
contains optimal solutions to subproblems.

(A greedy algorithm works by iteratively finding optimal solutions to
these subproblems, having made its initial greedy choice.)

51

MST and Activity Selection Revisited
Greedy-choice property for MST: If T is a MST, then T contains the

edge e with the least weight. (Otherwise we could replace some edge
in T with e and arrive at a better solution.)

Optimal substructure property for MST: If T is a MST, then
removing the edge e with the least weight leaves two MSTs of
smaller graphs. (Otherwise we could improve on T .)

e

Greedy-choice property for Activity Selection: If A is an optimal
solution, then we can assume that it contains 1. (Otherwise we can
replace the first activity in A by 1.)

Optimal substructure property for Activity Selection: If A is an
optimal solution, then A−{1} is an optimal solution to {i : si ≥ f1}.
(Otherwise we could improve on A.)

52

Data Compression
We wish to compress a text file (a string of characters) using a binary
code of variable length, that is, a code in which the number of bits needed
for the encoding may vary from character to character.

We restrict our attention to prefix codes, that is, codes in which no
codeword is a prefix of any other codeword.

For example, the code

a 7→ 0 b 7→ 10 c 7→ 11

is a prefix code, whereas the code

a 7→ 0 b 7→ 11 c 7→ 111

is not.

(In the latter case, there is no way of telling whether 111111
encodes bbb or cc.)

53

Why Variable-Length Prefix Codes
It would be wasteful to use a fixed-length code. For example, a
fixed-length code for the three characters a, b and c as above would
require (at least) two bits for every character; by encoding a with only
one bit, we save one bit for every occurrence of a.

(Presumably a occurs more often than either b or c; the more
frequently-occurring characters should have shorter codes.)

Prefix codes allow easy encoding and decoding.
• To encode a text we simply replace each character with its code and

concatenate them.
• To decode the text, we identify the initial codeword, translate it back

to the original character, remove it from the encoded file, and repeat
the decoding procedure.

Eg, using the above prefix code, the string 0110101011 uniquely
corresponds to acabbc.

54

The Tree Representation of a Code
Any prefix code is represented in an obvious way by a binary tree.
For example, the code

a 7→0 b 7→101 c 7→100 d 7→111 e 7→1101 f 7→1100

is represented by the following binary tree.

a

c b

f e

d

0 1

0 1

0 1

0 1

0 1

Using the tree, it is easy to decode any encoded text. For example:
101011111111011101111

is easily decoded, character-by-character, to

101 0 111 111 1101 1101 111
b a d d e e d

55

A More Efficient Code
Using the previous code, the text baddeed is encoded by a bit string of
length 21.

If instead we use the code

a 7→ 1011 b 7→ 100 c 7→ 10100 d 7→ 0 e 7→ 11 f 7→ 10101

then the text baddeed would instead be encoded as the 14-bit string
10010110011110, rather than as a 21-bit string.

The tree representation of this code is as follows.

d

b

c f
a

e

0 1

0 1

0 1

0 1

0 1

Can we improve on this? No!

56

Computing the encoded length

Given a prefix code tree T , we can compute the number of bits required to
encode a given text.

For alphabet C, let f(c) be the frequency (number of occurrences) of the
character c ∈ C in the text, and let dT (c) be the depth of the leaf labelled
c in T (that is, the length of the code for c).

Then the number of bits required to encode the text is

B(T) =
∑

c∈C f(c)dT (c).

For example, the number of bits required to encode baddeed is:

B(T) = f(a)dT (a) + · · · + f(f)dT (f)

= 1 · 4 + 1 · 3 + · · · + 2 · 2 + 0 · 5

= 4 + 3 + 0 + 3 + 4 + 0 = 14.

57

The Data Compression Problem

Input: A set C of characters (which possibly appear in some text to be
compressed), along with a function f : C→ N indicating the number
of times each character appears.

Output: A binary code which provides an optimal compression of the
text.

A Greedy Algorithm: Construct the prefix code tree bottom-up, starting
with all characters as leaves, and successively merging the two
lowest-frequency sub-trees.

(Thus high-frequency characters are merged after the
lower-frequency characters, giving them the tendency to end up
higher up in the tree.)

This is the idea underlying Huffman Codes.

58

Constructing a Huffman Code

HUFFMAN(C)

1 n← |C| ; Q← C

2 for i← 1 to n − 1 do
3 z← ALLOCATE-NODE()

4 x← left(z)← EXTRACT-MIN(Q)

5 y← right(z)← EXTRACT-MIN(Q)

6 f(z)← f(x) + f(y)

7 INSERT(Q, z)

8 return EXTRACT-MIN(Q)

Q is a priority queue, keyed on f.

Assuming the queue is implemented as a binary heap, its initialization
(line 2) can be performed in O(n) time; and each heap operation takes
time O(lg n) time.

Thus the total running time is O(n lg n).

59

Huffman Coding Illustrated

(1) (2)f:5 e:9 c:12 b:13 d:16 a:45 c:12 b:13 d:16 a:4514

f:5 e:9
0 1

(3) (4)14

f:5 e:9

d:16 25

c:12 b:13

a:45 25

c:12 b:13

a:45

14

f:5 e:9

d:16

30
0 1 0 1 0 1

0 1

0 1

(5) (6)a:45

25

c:12 b:13

55

14

f:5 e:9

d:16

30 a:45

25

c:12 b:13

55

14

f:5 e:9

d:16

30

100

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

60

The Greedy-Choice Property
for Huffman’s Algorithm

Let: • T represent an optimal prefix code;
• x, y ∈ C be the two least-frequent characters;
• a, b ∈ C be siblings with the longest codes;
• T ′ be T with x↔ a and y↔ b exchanged.

Fact: B(T) − B(T ′) ≥ 0, so T ′ also represents an optimal prefix code.

Proof: B(T) − B(T ′) =
∑

c∈C
f(c)dT (c) −

∑
c∈C

f(c)dT ′(c)

= f(x)dT (x) + f(y)dT (y) + f(a)dT (a) + f(b)dT (b)

− f(x)dT ′(x) − f(y)dT ′(y) − f(a)dT ′(a) − f(b)dT ′(b)

= f(x)dT (x) + f(y)dT (y) + f(a)dT (a) + f(b)dT (b)

− f(x)dT (a) − f(y)dT (b) − f(a)dT (x) − f(b)dT (y)

= (f(a) − f(x))(dT (a) − dT (x))

+ (f(b) − f(y))(dT (b) − dT (y)) ≥ 0. �

Corollary: The greedy-choice property holds.

61

The Optimal Substructure Property
for Huffman’s Algorithm

Let: • T represent an optimal prefix code;
• x, y ∈ C be siblings with parent z;
• T ′ = T−{x, y}; C ′ = C−{x, y} ∪ {z}; and f(z) = f(x) + f(y).

Fact: T ′ represents an optimal prefix code for C ′.

Proof: B(T) = B(T ′) + f(x) + f(y).

Hence if there were a more optimal tree, then replacing x and y under
z in this tree would provide a more optimal solution to the original
problem. �

Corollary: The optimal substructure property holds.

Corollary: The algorithm is correct.

62

When Greedy Algorithms Fail:
Making Change Revisited

Suppose we want to solve the Making Change problem of paying 9 cents
with 1, 4 and 6 cent coins.

The greedy algorithm would give 6+1+1+1 rather than the optimal 4+4+1.

To solve the general Making Change problem, we can do as follows:

• In order to pay the sum of N cents using n distinct coins
〈d1, d2, . . . , dn 〉, we set up an n × (N+1) table c[1..n , 0..N].

• In this table, c[i, j] will hold the minimum number of coins required
to pay the amount j using only coins d1, . . . , di.

(If no arrangement of such coins makes up
N cents, then we shall have c[i, j] =∞.)

• The solution will then be contained in c[n, N].

It then suffices to find a way to fill in this table.

63

Bookkeeping for Making Change
To fill out the table, we can proceed as follows:

• Clearly c[i, 0]← 0 for every i.

• Also, for every j, c[1, j]←
{

j div d1 if j mod d1 = 0,
∞ otherwise.

(Whenever we cannot make change for amount j using coins
d1, . . . , di, we let c[i, j] =∞.)

• For c[i, j] (i > 1, j > 0), we may either:
– pay j cents using only coins d1, . . . , di−1: c[i, j] ≤ c[i−1, j];

or

– use (at least) one coin di, and reduce the problem to that of
paying j−di: c[i, j] ≤ 1 + c[i, j−di].

• As we want to minimize the number of coins, we choose the better of
these two options:

c[i, j]← min
(

c[i−1, j], 1 + c[i, j−di]
)

.

64

The Making-Change Algorithm

MAKING-CHANGE(N, d[1..n]) . Running time O(nN)

1 for i← 1 to n do c[i, 0]← 0

2 for j← 1 to N do
3 if (j mod d1)=0 then c[1, j]← j div d1 else c[1, j]←∞
4 for i← 2 to n do
5 for j← 1 to N do
6 if j < di then c[i, j]← c[i−1, j]

7 else c[i, j]← min(c[i−1, j], 1 + c[i, j−di])

8 return c

Example: Paying 9 cents using 6, 1 and 4 cent coins (order irrelevant).

Amount 0 1 2 3 4 5 6 7 8 9

d1 = 6 0 ∞ ∞ ∞ ∞ ∞ 1 ∞ ∞ ∞
d2 = 1 0 1 2 3 4 5 1 2 3 4

d3 = 4 0 1 2 3 1 2 1 2 2 3

65

Determining the optimal solution

The algorithm MAKING-CHANGE tells us that only c[3, 9] = 3 coins are
necessary to make up 9 cents; but it doesn’t say which three coins to use.

The following algorithm will answer that question, by retracing the
solution through the c table.

PAY-OUT(c[1..n, 0..N], d[1..n])

1 i← n ; j← N ; coins← 〈 〉
2 while j > 0 do
3 if c[i, j] = c[i−1, j] then i← i−1

4 else coins← di :: coins ; j← j−di

5 return coins

This algorithm involves stepping back n rows, and making c[n, N] jumps
to the left. Hence it runs in time O(n + N), and is thus a negligible
addition to the O(nN) algorithm MAKING-CHANGE.

66

Why the Greedy Algorithm fails

As with problems which can be solved by greedy algorithms,
MAKING-CHANGE has the

Optimal Substructure Property: An optimal solution to the problem
contains optimal solutions to subproblems.

However, the greedy-choice property fails. We now have to consider
many potential solutions, which requires added bookkeeping: we need to
remember past decisions, and also build solutions from the bottom up.

We do have something though, namely the

Overlapping Subproblems Property: The space of subproblems is
small, so an otherwise-obvious top-down, divide-and-conquer
recursive algorithm would solve the same subproblems over and over.

67

Dynamic Programming
The presence of
• Optimal Substructure Property and
• Overlapping Subproblems Property

characterises Dynamic Programming.

With dynamic programming, we take a natural recursive definition, and
instead of computing it in a top-down fashion, we compute it bottom-up,
thus exploiting the overlapping subproblems property by only solving
each subproblem once.

For example, a top-down algorithm for computing Fibonacci numbers
from their definition:

F
0

= 0 F
1

= 1 F
n

= F
n−1

+ F
n−2

would run in exponential time, while a bottom-up algorithm, computing
F

0
, F

1
, F

2
, F

3
, F

4
, . . . , F

n−1
, F

n
would run in linear time.

68

Matrix Chain Multiplication
Assumption: Computing A×B where A is a p×q matrix and B is a

q×r matrix requires pqr scalar multiplications.
Question: What is the most efficient order for multiplying

A
1
×A

2
× · · ·×A

n
where A

i
is a p

i−1
×p

i
matrix?

Example: Let A
1
, A

2
, A

3
and A

4
be matrices of dimensions 6×2, 2×5,

5×4 and 4×3. Then A
1
A

2
A

3
A

4
can be computed in five ways:

• ((A
1
A

2
)A

3
)A

4
=⇒ 252 scalar multiplications.

• (A
1
A

2
)(A

3
A

4
) =⇒ 210 scalar multiplications.

• (A
1
(A

2
A

3
))A

4
=⇒ 160 scalar multiplications.

• A
1
((A

2
A

3
)A

4
) =⇒ 100 scalar multiplications.

• A
1
(A

2
(A

3
A

4
)) =⇒ 126 scalar multiplications.

So the right choice can make a big difference.

But we generally cannot make this choice by exhaustive search as in
the above example, as there are exponentially-many possibilities.

69

A Dynamic Programming Solution
Let m[i, j] be the cost (number of scalar multiplications) of computing
A

i
×A

i+1
× · · ·×A

j
using an optimal order of multiplying the matrices.

Then

m[i, j] =

{
0 if i = j,
min

i≤k<j

(m[i, k] + m[k + 1, j] + p
i−1

p
k
p

j
) if i < j.

If we implement this as a top-down recursive algorithm, it would run in
exponential time. However, there are only a quadratic number of
subproblems. (The recursive algorithm solves these subproblems over and
over.) Hence, we use a bottom-up dynamic-programming algorithm.

Note though: m[1, n] only tells us how many scalar multiplications are
necessary in the optimal solution, not what the optimal solution is (ie, the
order in which to multiply the matrices). For this, we can maintain a
second table s, and record in s[i, j] the value of k from which the minimal
value of m[i, j] was computed.

70

The Algorithm

MATRIX-CHAIN-ORDER(p) . Running time O(n3)

1 n← length(p)−1

2 for i← 1 to n do m[i, i]← 0

3 for l← 2 to n do
4 for i← 1 to n−l+1 do
5 j← i+l−1 ; m[i, j]←∞
6 for k← i to j−1 do
7 q← m[i, k] + m[k + 1, j] + p

i−1
p

k
p

j

8 if q < m[i, j] then m[i, j]← q ; s[i, j]← k

9 return (m, s)

For our example, p = 〈6, 2, 5, 4, 3〉, and the tables computed are:

m 1 2 3 4

1 0 60 88 100

2 − 0 40 64

3 − − 0 60

4 − − − 0

s 1 2 3 4

1 0 1 1 1

2 − 0 2 3

3 − − 0 3

4 − − − 0

71

Printing the Matrix-Chain
Using the s table, we can then reconstruct and print out an optimal Matrix
Chain as follows.

MATRIX-CHAIN-PRINT(s, i, j)

1 if i = j then print “A”i
2 else
3 print “(”
4 MATRIX-CHAIN-PRINT(s, i, s[i, j])

5 MATRIX-CHAIN-PRINT(s, s[i, j] + 1, j)

6 print “)”

We would then invoke this algorithm initially by

MATRIX-CHAIN-PRINT(s, 1, n).

For our example, we would get the output: (A
1
((A

2
A

3
)A

4
)).

We could equally modify this algorithm to carry out the matrix
multiplications in an optimal way.

72

Longest Common Subsequence (LCS)

Problem: Given two sequences X = 〈x1, x2, . . . , xm〉 and
Y = 〈y1, y2, . . . , yn〉, find the longest common subsequence.

Example: The longest common subsequence of the sequences
a b c a b a b c a b b c a

a b r a c a d a b r a

is abcaaba and is of length 7.

There are 2m subsequences of X, so we cannot check them all
against Y.

However, we can express this as a dynamic programming problem,
and derive an efficient algorithm to solve it.

73

Dynamic Programming LCS

Let c[i, j] denote the length of the LCS of x1 · · · xi and y1 · · ·yj.

Then c[m, n] is the length of the LCS we are trying to compute.

A recursive definition for c, exploiting an obvious optimal subproblem
property, is given as follows.

c[i, j] =





0 if i = 0 or j = 0,

c[i−1, j−1] + 1 if i, j > 0 and xi = yj,

max(c[i, j−1], c[i−1, j]) if i, j > 0.

74

Computing the length of the LCS

The following is a dynamic-programming algorithm which computes
c[i, j], as well as a further table b[i, j] to use for constructing the LCS.

LCS-LENGTH(X, Y) . Running time O(mn)

1 m← length(X) ; n← length(Y)

2 for i← 0 to m do c[i, 0]← 0

3 for j← 0 to n do c[0, j]← 0

4 for i← 1 to m do
5 for j← 1 to n do
6 if xi = yj then
7 c[i, j]← c[i−1, j−1] + 1 ; b[i, j]← “↖”
8 else if c[i−1, j] ≥ c[i, j−1] then
9 c[i, j]← c[i−1, j] ; b[i, j]← “↑”

10 else c[i, j]← c[i, j−1] ; b[i, j]← “←”
11 return(c, b)

75

Printing the LCS

PRINT-LCS(b, X, i, j) . Running time O(m + n)

1 if i=0 or j=0 then return
2 else if b[i, j] = “↑” then PRINT-LCS(b, X, i−1, j)

3 else if b[i, j] = “←” then PRINT-LCS(b, X, i, j−1)

4 else PRINT-LCS(b, X, i−1, j−1) ; print xi

Example:

LCS = BCBA

j 0 1 2 3 4 5 6 7 8

i

0

1

2

3

4

5

6

yj B D C B B A B A
xi

A

B

C

B

D

A

0 0 0 0 0 0 0 0 0

0 0
↑

0
↑

0
↑

0
↑

0
↑

1↖ 1← 1↖

0 1↖ 1← 1← 1↖ 1↖ 1
↑

2↖ 2←

0 1
↑

1
↑

2↖ 2← 2← 2← 2
↑

2
↑

0 1↖ 1
↑

2
↑

3↖ 3↖ 3← 3↖ 3←

0 1
↑

2↖ 2
↑

3
↑

3
↑

3
↑

3
↑

3
↑

0 1
↑

2
↑

2
↑

3
↑

3
↑

4↖ 4← 4↖

76

All-Pairs Shortest Paths

Problem: Calculating the shortest route between any two cities from a
given set of cities 1, 2, . . . , n.

Input: A matrix d
i,j

(1 ≤ i, j ≤ n) of nonnegative values indicating the
length of the direct route from i to j.

Note: d
i,i

= 0 for all i; and if there is no direct route from i to j,
then d

i,j
=∞.

Output: A shortest distance matrix s
i,j

indicating the length of the
shortest route from i to j.

We shall give a recursive definition for s, which can be computed by a
dynamic-programming algorithm.

77

The Floyd-Warshall Algorithm

Let s
(k)

i,j
denote the shortest distance from i to j which only passes through

cities 1, 2, . . . , k. A recursive definition for s
(k)

i,j
is given as follows.

s
(k)

i,j
=

{
d

i,j
if k = 0,

min
(

s
(k−1)

i,j
, s

(k−1)

i,k
+ s

(k−1)

k,j

)

if k > 0.

FLOYD-WARSHALL-1(d, n)

1 s
(0) ← d

2 for k← 1 to n do
3 for i← 1 to n do
4 for j← 1 to n do
5 s

(k)

i,j
← min

(

s
(k−1)

i,j
, s

(k−1)

i,k
+ s

(k−1)

k,j

)

This algorithm runs in O(n3) time and space.
However, we can safely remove the superscripts from s (can you see
why?), and achieve O(n2) space.

78

Constructing Shortest Paths

To construct the shortest paths, we maintain a predecessor matrix π
i,j

in
which π

i,j
denotes the predecessor of j on some shortest path from i to j.

(If i = j or there is no such path, then π
i,j

= NIL.)

The final algorithm for computing s and π is thus as follows.

FLOYD-WARSHALL(d, n)

1 s← d

2 for i← 1 to n do
3 for j← 1 to n do
4 if i=j or d

i,j
=∞ then π

i,j
= NIL else π

i,j
= i

5 for k← 1 to n do
6 for i← 1 to n do
7 for j← 1 to n do
8 x← s

i,k
+ s

k,j

9 if x < s
i,j

then s
i,j
← x ; π

i,j
← π

k,j

79

Example

1 2

3

4

48

34

d 1 2 3 4

1 0 8 4 ∞
2 8 0 3 4

3 4 3 0 ∞
4 ∞ 4 ∞ 0

s
(0)

/π
(0)

= s
(1)

/π
(1)

s
(2)

/π
(2)

s
(3)

/π
(3)

= s
(4)

/π
(4)

1 2 3 4

1 0/NIL 8/1 4/1 ∞/NIL

2 8/2 0/NIL 3/2 4/2

3 4/3 3/3 0/NIL ∞/NIL

4 ∞/NIL 4/4 ∞/NIL 0/NIL

1 2 3 4

1 0/NIL 8/1 4/1 12/2

2 8/2 0/NIL 3/2 4/2

3 4/3 3/3 0/NIL 7/2

4 12/2 4/4 7/2 0/NIL

1 2 3 4

1 0/NIL 7/3 4/1 11/2

2 7/3 0/NIL 3/2 4/2

3 4/3 3/3 0/NIL 7/2

4 11/3 4/4 7/2 0/NIL

80

