References

There are very many algorithms textbooks in print. The one I shall regularly refer to (as **CLRS**) is:

Introduction to Algorithms (Second Edition) by Cormen, Leiserson, Rivest and Stein, The MIT Press, 2001.

Two others worth exploring for this course:

Fundamentals of Algorithmics by Brassard and Bratley, Prentice Hall, 1996.

Algorithmics: The Spirit of Computing (Third Edition) by Harel and Feldman, Addison Wesley, 2004.

Mathematical Functions

1

I shall assume you are comfortable with standard math functions, like exponentiation b^x and its inverse $\log_b x$.

 $\log_b a$ is the number x such that $b^x = a$.

We shall usually work with binary logarithms $\lg x = \log_2 x$.

Some Useful Identities

$$
\log_{b}(xy) = \log_{b} x + \log_{b} y \qquad \log_{b}(x^{y}) = y \log_{b} x \qquad \frac{\log_{b} x}{\log_{b} x} = \log_{b} c
$$

We shall often use *floor* $|x|$ and *ceiling* $[x]$ functions:

- $|x|$ is the largest integer $\leq x$, e.g., $|5.3| = 5$
- [x] is the smallest integer $\ge x$, e.g., [5.3] = 6

as well as summation notation:

$$
\sum_{i=1}^n a_i = a_1 + a_2 + a_2 + \cdots + a_n.
$$

Readings from CLRS

Introduction (Slides 3-17) Chapters 1-3

Divide-and-Conquer (Slides 18–41) Chapter 4 (not Section 4.4). Chapter 28, Section 28.2. Chapter 33, Section 33.4.

Greedy Algorithms (Slides 42–62) Chapter 16, Sections 16.1–16.3. Chapter 23, Section 23.2 (pp 567-570).

Dynamic Programming (Slides 63–80) Chapter 15. Chapter 25, pp 620-622 and Section 25.2.

2

Basic Definitions

Model of Computation: An abstract sequential computer called ^a *Random Access Machine (RAM)*.

Computational Problem: A specification in general terms of *inputs* and *outputs* and the desired input/output relationship.

Problem Instance: An actual set of inputs for a given problem.

Algorithm: A method of solving ^a problem which can be implemented on ^a computer (in particular, ^a RAM).

- A *program* is ^a particular *implementation* of some algorithm.
- *A program is not the same as an algorithm.*

(In this course, you shall not be implementing any algorithms.)

• There will always be many different algorithms for any given problem.

4

At each stage, the algorithm greedily chooses for inclusion in A the earliest-finishing activity compatible with the activities already chosen.

The running time of the algorithm is dominated by the sorting of activities in line 1, giving it a running time of $\Theta(n \lg n)$ (assuming an optimal sorting algorithm is used).

If the activities are already sorted, the algorithm (from line 2 onward) runs in time $\Theta(n)$.

49

When Greedy Algorithms Work

Not every optimization problem can be solved using ^a greedy algorithm. (For example, Making Change with ^a poor choice of coins.)

There are two vital components to ^a problem which make ^a greedy algorithm appropriate:

Greedy-choice property: *A globally optimal solution to the problem can be obtained by making ^a locally-optimal (greedy) choice.*

(A greedy algorithm does not look ahead nor backtrack; hence ^a single bad choice, no matter how attractive it was when made, will lead to ^a suboptimal solution.)

Optimal substructure property: *An optimal solution to the problem contains optimal solutions to subproblems.*

(A greedy algorithm works by iteratively finding optimal solutions to these subproblems, having made its initial greedy choice.)

Correctness of the Algorithm

Fact: At any point, A is a subset of a solution.

Proof: By induction on |A|. This is clearly true (initially) when $A = \emptyset$.

Suppose $A \neq \emptyset$; let k be the most recently added activity, and B be a solution which (by induction) contains $A-\{k\}$ but not k.

By induction, the activities of $A-\{k\}$ are mutually-compatible; and k, by being added, is compatible with the activities of A−{k}. Thus the activities of A must be mutually compatible.

Choose the $i \in B-A$ with the least finish time.

We must have $f_k \le f_i$ (for otherwise i would have been added to A rather than k).

But then we can get another solution by replacing i by k in B. \Box

Corollary: The algorithm is correct.

50

MST and Activity Selection Revisited

Greedy-choice property for MST: If T is ^a MST, then T contains the edge ^e with the least weight. (Otherwise we could replace some edge in T with ^e and arrive at ^a better solution.)

Optimal substructure property for MST: If T is ^a MST, then removing the edge ^e with the least weight leaves two MSTs of smaller graphs. (Otherwise we could improve on T.)

Greedy-choice property for Activity Selection: If A is an optimal solution, then we can assume that it contains 1. (Otherwise we can replace the first activity in A by 1.)

Optimal substructure property for Activity Selection: If A is an optimal solution, then A–{1} is an optimal solution to {i : s_i > f₁}. (Otherwise we could improve on A.)

f:5 II e:9

60

Thus the total running time is $O(n \lg n)$.

All-Pairs Shortest Paths Problem: Calculating the shortest route between any two cities from a given set of cities $1, 2, \ldots, n$. **Input:** A matrix d_i, $(1 \le i,j \le n)$ of nonnegative values indicating the length of the direct route from i to j. Note: $d_{ij} = 0$ for all i; and if there is no direct route from i to j, then $d_{ij} = \infty$. **Output:** A shortest distance matrix $s_{i,j}$ indicating the length of the shortest route from i to j. We shall give ^a recursive definition for ^s, which can be computed by ^a dynamic-programming algorithm. 77 **The Floyd-Warshall Algorithm** Let $s_{i,j}^{(k)}$ denote the shortest distance from i to j which only passes through cities 1, 2, ..., k. A recursive definition for $s_{i,j}^{(k)}$ is given as follows. $s^{(k)}$ $\mathbf{r}_{\text{i,j}}$ = $=\begin{cases} d_{i,j} & \text{if } k = 0, \\ \min\left(s_{i,j}^{(k-1)}, s_{i,k}^{(k-1)} + s_{k,j}^{(k-1)}\right) & \text{if } k > 0. \end{cases}$ FLOYD-WARSHALL-1(d, ⁿ) $1 \quad s^{(0)} \leftarrow d$ 2 **for** $k \leftarrow 1$ **to** n **do** f or $i \leftarrow 1$ to n do $for j ← 1 to n do$ 5 **s**(k) i,j i, $\frac{1}{s}$ i,j + min $(s_{i,j}^{(k-1)}, s_{i,k}^{(k-1)} + s_{k,j}^{(k-1)})$ This algorithm runs in $O(n^3)$ time and space. However, we can safely remove the superscripts from ^s (can you see why?), and achieve $O(n^2)$ space. 78 **Constructing Shortest Paths** To construct the shortest paths, we maintain a *predecessor matrix* π _{i,j} in which $\pi_{i,j}$ denotes the predecessor of j on some shortest path from i to j. (If $i = j$ or there is no such path, then $\pi_{i,j} = \text{NIL}$.) The final algorithm for computing s and π is thus as follows. FLOYD-WARSHALL(d, ⁿ) $1 \quad s \leftarrow d$ 2 **for** $i \leftarrow 1$ **to** n **do** 3 **for** $j \leftarrow 1$ **to** n **do** 4 **if** $i=j$ or $d_{i,j} = \infty$ then $\pi_{i,j} = \text{NIL}$ else $\pi_{i,j} = i$ 5 **for** $k \leftarrow 1$ **to** n **do** 6 **for** $i \leftarrow 1$ **to** n **do** 7 **for** $j \leftarrow 1$ **to** n **do** 8 $x \leftarrow s_{i,k} + s_{k,j}$ 9 **if** $x < s_{i,j}$ **then** $s_{i,j} \leftarrow x$; $\pi_{i,j} \leftarrow \pi_{k,j}$ **Example** 1 2 3 4 $\frac{8}{4}$ 4 \ /3 d 1 1 1 2 3 4 1 0 8 4 0 ∞ 2 8 0 3 4 3 4 3 0 ∞ 4 **∞ 4 ∞ 0** $s^{(0)} / \pi^{(0)} = s^{(1)} / \pi^{(1)}$ s $\binom{2}{\pi}$ (2) $s^{(3)} / \pi^{(3)} = s^{(4)} / \pi^{(4)}$ 1 2 3 4 $0/_{\text{NIL}}$ $8/1$ $4/1$ $8/2$ 0/_{NIL} $\frac{4}{3}$ $\frac{3}{3}$ $\frac{0}{\text{NII}}$ ∞ /_{NII} 4/₄ ∞ /_{NII} 1 2 3 4 $0/_{\text{NIL}}$ $8/1$ $4/1$ $12/2$ $\frac{8}{2}$ 0/NIL $\frac{3}{2}$ 4/2 $3 \parallel 4/3 \parallel 3/3 \parallel 0/_{\text{NIL}} \parallel 7/2$ $12/2$ $4/4$ $7/2$ $0/_{\text{NIL}}$ 1 2 3 3 4 $0/_{\text{NII}}$ $7/3$ $4/1$ $11/2$ $^{7}/_3$ 0/NIL $^{3}/_2$ 4/2 $\frac{4}{3}$ $\frac{3}{3}$ $\frac{0}{\text{NIL}}$ $\frac{7}{2}$ $11/3$ $4/4$ $7/2$ $0/_{\text{NIL}}$