References

There are very many algorithms textbooks in print. The one I shall regularly refer to (as **CLRS**) is:

Introduction to Algorithms (Second Edition) by Cormen, Leiserson, Rivest and Stein, The MIT Press, 2001.

Two others worth exploring for this course:

Fundamentals of Algorithmics by Brassard and Bratley, Prentice Hall, 1996.

Algorithmics: The Spirit of Computing (Third Edition) by Harel and Feldman, Addison Wesley, 2004.

Mathematical Functions

1

I shall assume you are comfortable with standard math functions, like exponentiation b^{x} and its inverse $\log_{b} x$.

 $\log_{b} a$ is the number x such that $b^{x} = a$.

 $\frac{\log_b x}{\log_a x} = \log_b c$

We shall usually work with binary logarithms $lg x = log_2 x$.

Some Useful Identities

$$\log_b(xy) = \log_b x + \log_b y$$
 $\log_b(x^y) = y \log_b x$

We shall often use *floor* $\lfloor x \rfloor$ and *ceiling* $\lceil x \rceil$ functions:

 $\lfloor x \rfloor$ is the largest integer $\leq x$, e.g., $\lfloor 5.3 \rfloor = 5$ [x] is the smallest integer $\geq x$, e.g., $\lfloor 5.3 \rfloor = 6$

as well as summation notation:

$$\sum_{i=1}^{n} a_i = a_1 + a_2 + a_2 + \cdots + a_n.$$

Readings from CLRS

Introduction (Slides 3-17) Chapters 1-3

Divide-and-Conquer (Slides 18–41) Chapter 4 (not Section 4.4). Chapter 28, Section 28.2. Chapter 33, Section 33.4.

Greedy Algorithms (Slides 42–62) Chapter 16, Sections 16.1–16.3. Chapter 23, Section 23.2 (pp 567-570).

Dynamic Programming (Slides 63–80) Chapter 15. Chapter 25, pp 620-622 and Section 25.2.

2

Basic Definitions

Model of Computation: An abstract sequential computer called a *Random Access Machine (RAM)*.

Computational Problem: A specification in general terms of *inputs* and *outputs* and the desired input/output relationship.

Problem Instance: An actual set of inputs for a given problem.

Algorithm: A method of solving a problem which can be implemented on a computer (in particular, a RAM).

- A *program* is a particular *implementation* of some algorithm.
- A program is <u>not</u> the same as an algorithm.

(In this course, you shall not be implementing any algorithms.)

• There will always be many different algorithms for any given problem.

4

Time to s	olve a pro	-	Reveali	_	g a $T(n)$ -time	algorithm.				Analyzing How <u>no</u>	Algorithms <u>ot</u> to do it	s:		
T(n)	n=10	n=20	n=50	n=100		n=1000	1	Insertion	N-SORT(A)			COS	t repetition	ns
nlgn	33 µs	86 µs	282 μs	664 µs	4.5 ms	10 ms		1 <u>for</u> j 2 k	$\leftarrow 2 \underline{to} lens$ ley $\leftarrow A[j]$			c ₁ c ₂	n n_1	<u>ns</u>
n ² 2 ⁿ	100 μs 1 ms	400 μs 1 s	2.5 ms 36 yr	10 ms 10 ¹⁶ yr	-	1 s 10 ²⁸⁷ yr		4 i	$\leftarrow j{-}1$	into sorted seques $\mathbf{and} \ \mathbf{A}[\mathbf{i}] > \mathbf{key}$		c ₄	n-1 n-1 $\sum_{i=1}^{n} t_{i}$	
n!	4 s	10 ⁵ yr	10 ⁵¹ yr	10 ¹⁴⁴ yr	10^{1120} yr	10 ²⁵⁵⁴ yr		6	$A[i{+}1] \leftarrow$		<u>uc</u>	C6	$\frac{\sum_{j=2}^{n} t_j}{\sum_{j=2}^{n} (t_j)}$	j−1)
argest p	roblem ins	stance sol	vable in 1	minute.					$i \leftarrow i-1$ $(i+1) \leftarrow ke$	e11		C7	$\frac{\sum_{j=2}^{n} (t_j)}{n-1}$	_j -1)
T(1	,		< faster mad	chine	$10^3 \times \text{faster ma}$	chine		where:		cg		-0		
n lg	-	×10 ⁶	7.5×10	6	2.7×10 ⁹				ength(A),	and				
n		745	10 954		244 948			,		mes the <u>while</u>	-	line 5 is o	executed ir	n
2 ¹	<u> </u>	25	26		35			th	ne jth iterat	ion of the <u>for</u> -	loop.			
n	! 1	11	11		13)							
			9								10			
											10			_
		-	e Exact A	· ·)			Growth o	f Functions	s		
		ation: t_j	e Exact <i>1</i> = 1 for al	ll j, i.e., w	i s /hen A is alrea	ady sorted.		We conside	er only func		f Functions	s		
Run	ntime: (c	ation: $t_j = c_1 + c_2 + - (c_2 + c_3)$	$e Exact $ $= 1 \text{ for al}$ $c_4 + c_5 - c_4 + c_5 - c_4 + c_5 - c_5 + c_5 + c_5 - c_5 + $	ll j, i.e., w + c_8)n + c_8).	hen A is alrea			O-notation	$\mathbf{n:} \mathbf{O}(\mathfrak{g}(\mathfrak{n}))$	Growth o	f Functions $\rightarrow \mathbb{R}^{\geq 0}$. all functions		which the	re are
Run Vorst po <i>rever</i>	ntime: (c ssible situ sse order.	ation: $t_j = c_1 + c_2 + - (c_2 + c_3)$	$e Exact $ $= 1 \text{ for al}$ $c_4 + c_5 - c_4 + c_5 - c_4 + c_5 - c_5 + c_5 + c_5 - c_5 + $	ll j, i.e., w + c_8)n + c_8). all j, i.e.,	when A is alreated when A is sort	ted in		O-notation	a: $O(g(n))$	Growth o etions $f, g : \mathbb{N}$	f Functions $\rightarrow \mathbb{R}^{\geq 0}$. all functions $\stackrel{\frown}{}$ h that	f(n) for	which the	re are
Run Worst po rever	ntime: (c ssible situ sse order. ntime:	ation: t_j $c_1 + c_2 + - (c_2 + uation: t$	$e \text{ Exact } a = 1 \text{ for all}$ $= 1 \text{ for all}$ $c_4 + c_5 = c_4 + c_5 = c_5 + c_5 + c_5 = c_5 + c_5 + c_5 = c_5 + c_5 + c_5 + c_5 = c_5 + c_5 + c_5 + c_5 = c_5 + c_5 + c_5 + c_5 + c_5 + c_5 = c_5 + c_5$	$ j, i.e., w + c_8 n + c_8 n + c_8 .$ all j, i.e., $\frac{(c_5 + c_6)}{2} - \frac{c_5}{2} - \frac{c_6}{2} - \frac{c_6}{2}$	hen A is alrea	ted in		O-notation positiv	a: $O(g(n))$ be constants a: $\Omega(g(n))$	Growth o ctions $f, g : \mathbb{N}$ () is the set of s c and n_0 suc	f Functions $\rightarrow \mathbb{R}^{\geq 0}$. all functions h that for all n fall functions	f(n) for $n \ge n_0$.		
Run Worst po <i>rever</i> Run Average s	ntime: (c ssible situ sse order. ntime: + situation:	ation: t_j $c_1 + c_2 + - (c_2 + - (c_2 + - (c_1 + c_2)))$ $- (c_1 + c_2)$: $t_j = \frac{j}{2}$	e Exact $a = 1$ for al $c_4 + c_5 - c_4 + c_5 - c_6$ $c_2 + c_4 + c_5 - c_6 - c_6$	Il j, i.e., w + c_8)n + c_8). all j, i.e., $\frac{c_5}{2}$ + $\frac{c_5}{2} - \frac{c_6}{2} - c$	when A is alreat when A is sort $+\frac{c_6}{2} + \frac{c_7}{2} n^2$ $-\frac{c_7}{2} + c_8 n$	rted in		O-notation positiv	n: $O(g(n))$ e constants n: $\Omega(g(n))$ e constants	Growth o ctions $f, g : \mathbb{N}$ b) is the set of $f(n) \le cg(n)$ c)) is the set of	f Functions $\rightarrow \mathbb{R}^{\geq 0}$. all functions h that for all n fall functions h that	f(n) for $n \ge n_0$. f(n) for		
Run Worst po <i>rever</i> Run Average s likely	ntime: (c ssible situ sse order. ntime: + situation: y, so expect ntime:	ation: t_{j} $c_{1} + c_{2} + - (c_{2} + - (c_{2} + - (c_{1} + c_{2} + - (c_{2} + - (c_{1} + c_{2} + - ($	e Exact $a = 1$ for al $c_4 + c_5 - c_4 + c_5 - c_4 + c_5 - c_4 + c_5 - c_5 $	Il j, i.e., w + c ₈)n + c ₈). all j, i.e., $\frac{c_5}{2}$ + $\frac{c_5}{2}$ - $\frac{c_6}{2}$ - $(c_2 + c_4 - c_5)$.e., every j	when A is already when A is already here. $+ \frac{c_6}{2} + \frac{c_7}{2} n^2 - \frac{c_7}{2} + c_8 n + c_5 + c_8 $	rted in s equally η ²		 O-notation positive Ω-notation positive Θ-notation 	a: $O(g(n))$ b: $O(g(n))$ c: $O(g(n))$	Growth o ctions $f, g : \mathbb{N}$ b) is the set of $f(n) \le cg(n)$ c and n_0 success $f(n) \le cg(n)$ c and n_0 success f(n) = cg(n)	f Functions $\rightarrow \mathbb{R}^{\geq 0}$. all functions h that for all n f all functions h that f or all n all functions	$f(n) \text{ for}$ $u \ge n_0.$ $f(n) \text{ for}$ $u \ge n_0.$	t which the	ere are

A Greedy AlgorithmGREEDY-ACTIVITY-SELECTOR(s, f)1sort activities so that $f_1 \leq f_2 \leq \cdots \leq f_n$ 2A $\leftarrow \{1\}$; $j \leftarrow 1$ 3<u>for</u> $i \leftarrow 2$ to n do4if $s_i \geq f_j$ then5A $\leftarrow A \cup \{i\}$; $j \leftarrow i$ 6return A

At each stage, the algorithm greedily chooses for inclusion in A the earliest-finishing activity compatible with the activities already chosen.

The running time of the algorithm is dominated by the sorting of activities in line 1, giving it a running time of $\Theta(n \lg n)$ (assuming an optimal sorting algorithm is used).

If the activities are already sorted, the algorithm (from line 2 onward) runs in time $\Theta(n)$.

49

When Greedy Algorithms Work

Not every optimization problem can be solved using a greedy algorithm. (For example, Making Change with a poor choice of coins.)

There are two vital components to a problem which make a greedy algorithm appropriate:

Greedy-choice property: A globally optimal solution to the problem can be obtained by making a locally-optimal (greedy) choice.

(A greedy algorithm does not look ahead nor backtrack; hence a single bad choice, no matter how attractive it was when made, will lead to a suboptimal solution.)

Optimal substructure property: An optimal solution to the problem contains optimal solutions to subproblems.

(A greedy algorithm works by iteratively finding optimal solutions to these subproblems, having made its initial greedy choice.)

Correctness of the Algorithm

Fact: At any point, A is a subset of a solution.

Proof: By induction on |A|. This is clearly true (initially) when $A = \emptyset$.

Suppose $A \neq \emptyset$; let k be the most recently added activity, and B be a solution which (by induction) contains $A - \{k\}$ but not k.

By induction, the activities of $A-\{k\}$ are mutually-compatible; and k, by being added, is compatible with the activities of $A-\{k\}$. Thus the activities of A must be mutually compatible.

Choose the $i\in B{-}A$ with the least finish time.

We must have $f_k \leq f_i$ (for otherwise i would have been added to A rather than k).

But then we can get another solution by replacing i by k in B. \Box

Corollary: The algorithm is correct.

50

MST and Activity Selection Revisited

Greedy-choice property for MST: If T is a MST, then T contains the edge *e* with the least weight. (Otherwise we could replace some edge in T with *e* and arrive at a better solution.)

Optimal substructure property for MST: If T is a MST, then removing the edge *e* with the least weight leaves two MSTs of smaller graphs. (Otherwise we could improve on T.)

Greedy-choice property for Activity Selection: If A is an optimal solution, then we can assume that it contains 1. (Otherwise we can replace the first activity in A by 1.)

Optimal substructure property for Activity Selection: If A is an optimal solution, then $A-\{1\}$ is an optimal solution to $\{i : s_i \ge f_1\}$. (Otherwise we could improve on A.)

Computing the encoded length

Given a prefix code tree T, we can compute the number of bits required to encode a given text.

For alphabet C, let f(c) be the frequency (number of occurrences) of the character $c \in C$ in the text, and let $d_T(c)$ be the depth of the leaf labelled c in T (that is, the length of the code for c).

Then the number of bits required to encode the text is

$$B(T) = \sum_{c \in C} f(c) d_T(c).$$

For example, the number of bits required to encode baddeed is:

$$\begin{split} \mathsf{B}(\mathsf{T}) \;&=\; \mathsf{f}(\mathsf{a})\mathsf{d}_\mathsf{T}(\mathsf{a}) \;+\; \cdots \;+\; \mathsf{f}(\texttt{f})\mathsf{d}_\mathsf{T}(\texttt{f}) \\ &=\; 1\cdot 4 \;+\; 1\cdot 3 \;+\; \cdots \;+\; 2\cdot 2 \;+\; 0\cdot 5 \\ &=\; 4 \;+\; 3 \;+\; 0 \;+\; 3 \;+\; 4 \;+\; 0 \;=\; 14. \end{split}$$

57

- **Input:** A set C of characters (which possibly appear in some text to be compressed), along with a function $f : C \to \mathbb{N}$ indicating the number of times each character appears.
- **Output:** A binary code which provides an optimal compression of the text.
- A Greedy Algorithm: Construct the prefix code tree bottom-up, starting with all characters as leaves, and successively merging the two lowest-frequency sub-trees.
 - (Thus high-frequency characters are merged after the lower-frequency characters, giving them the tendency to end up higher up in the tree.)

This is the idea underlying Huffman Codes.

All-Pairs Shortest Paths The Floyd-Warshall Algorithm Problem: Calculating the shortest route between any two cities from a Let $s_{i,j}^{(k)}$ denote the shortest distance from i to j which only passes through given set of cities $1, 2, \ldots, n$. cities 1, 2, ..., k. A recursive definition for $s_{i,i}^{(k)}$ is given as follows. $s_{i,j}^{(k)} = \begin{cases} d_{i,j} & \text{if } k = 0, \\ \min\left(s_{i,j}^{(k-1)}, s_{i,k}^{(k-1)} + s_{k,j}^{(k-1)}\right) & \text{if } k > 0. \end{cases}$ **Input:** A matrix $d_{i,j}$ $(1 \le i, j \le n)$ of nonnegative values indicating the length of the direct route from i to j. Note: $d_{i,i} = 0$ for all i; and if there is no direct route from i to j, FLOYD-WARSHALL-1(d, n)then $d_{i,i} = \infty$. 1 $s^{(0)} \leftarrow d$ **Output:** A shortest distance matrix $s_{i,i}$ indicating the length of the 2 for $k \leftarrow 1$ to n do shortest route from i to j. for $i \leftarrow 1$ to n do for $j \leftarrow 1$ to n do We shall give a recursive definition for s, which can be computed by a $s_{i,j}^{(k)} \leftarrow \min\left(s_{i,j}^{(k-1)}, s_{i,k}^{(k-1)} + s_{k,j}^{(k-1)}\right)$ 5 dynamic-programming algorithm. This algorithm runs in $O(n^3)$ time and space. However, we can safely remove the superscripts from s (can you see why?), and achieve $O(n^2)$ space. 78 77 **Constructing Shortest Paths** Example $s^{(0)}_{\pi}/\pi^{(0)} = s^{(1)}_{\pi}/\pi^{(1)}$ To construct the shortest paths, we maintain a *predecessor matrix* $\pi_{i,i}$ in which $\pi_{i,j}$ denotes the predecessor of j on some shortest path from i to j. $^{8}/1$ 4/1(If i = j or there is no such path, then $\pi_{i,j} = \text{NIL.}$) 0/_{NIL} 8/2 4/30/_{NIL} The final algorithm for computing s and π is thus as follows. $\infty_{/_{\rm NIL}}$ ∞ /_{NII} $^{4}/_{4}$ (2) FLOYD-WARSHALL(d, n)2 3 4 $\mathbf{s} \leftarrow \mathbf{d}$ 1 8/1 4/112/20/_{NIL} 2 for $i \leftarrow 1$ to n do 3/28/2 0/_{NIL} $^{4}/_{2}$ 3 for $j \leftarrow 1$ to n do 4/30/_{NIL} 7/2 12/24/4 7/20/_{NIL} <u>**if**</u> i=j <u>**or**</u> $d_{i,i} = \infty$ <u>**then**</u> $\pi_{i,i} = \text{NIL}$ <u>**else**</u> $\pi_{i,i} = i$ 4 $s^{(3)}_{(3)}_{(3)} = s^{(4)}_{(4)}_{(4)}$ 5 for $k \leftarrow 1$ to n do 6 for $i \leftarrow 1$ to n do 1 2 3 4 $^{4}/1$ $11/_{2}$ 7 for $j \leftarrow 1$ to n do 7/3 7/3 0/_{NIL} 3/2 $^{4}/_{2}$ 8 $\mathbf{x} \leftarrow \mathbf{s}_{i,k} + \mathbf{s}_{k,i}$ 3/30/_{NIL} 7/2 $^{4}/_{3}$ $\underline{\mathbf{if}} x < \mathbf{s}_{i,i} \underline{\mathbf{then}} \mathbf{s}_{i,i} \leftarrow x ; \ \pi_{i,i} \leftarrow \pi_{k,i}$ 9 11/34/4 0/_{NII}