
CS-226 Computability Theory, Coursework 1

Sean Handley, 320097@swan.ac.uk

March 2006

1

1.1 Show that, if A is finite, then |P(A)| = 2|A|

Suppose A = ∅

P(A) = {∅} therefore |P(A)| = 1

|A| = 0

|P(A)| = 20 = 1

The base case holds.

Suppose A = a ∪B, a /∈ B therefore |A| = |B|+ 1

|P(B)| = 2|B| and |P(A)| = 2|B+1|

Therefore:

P(A) = P(B) + induction step (+1)

2|B+1| = 2|(B+1)|

Therefore the induction step holds and |P(A)| is always equal to 2|A| where
A is finite.

1.2 Show that |A| 6= |P(A)|.
If |A| = |P(A)| holds true for any value, then it contradicts the proof in 1.1,
which is not intuitively feasible.

However, suppose |A| = |P(A)|.

Let A = ∅.

|P(A)| = 2|A| = 20 = 1

But |A| = 0, a contradiction.

1

Therefore, we can conclude that |A| 6= |P(A)|.

2 Define for sets A, B that A ≤ B if, and only if,
there exists an injective function f : A → B.
Show that ≤ is reflexive and transitive. Is ≤
symmetric? Prove your answer.

Def: A ≤ B ⇐⇒ f : A → B s.t. ∀a, f(a) → f(b), a ∈ A, b ∈ B

Reflexivity:

A ≤ B ∼ A′ ≤ B′

if, and only if, there exists an injective function

f : A → A′ s.t. ∀a,∀a′, f(a) → f(a′), a ∈ A, a′ ∈ A′

and f : B → B′ s.t. ∀b,∀b′, f(b) → f(b′), b ∈ B, b′ ∈ B′

Transitivity: A ≤ B,B ≤ C → A ≤ C

f : A → B s.t. ∀a, f(a) → f(b), a ∈ A, b ∈ B

f : B → C s.t. ∀b, f(b) → f(c), b ∈ B, c ∈ C

f : A → C s.t. ∀a, f(a) → f(c), a ∈ A, c ∈ C

Symmetry: A ≤ B ∼ B ≤ A

Suppose |A| ≤ |B| ∼ |B| ≤ |A|

According to the above definition,

A ≤ B ⇐⇒ f : A → B s.t. ∀a, f(a) → f(b), a ∈ A, b ∈ B

2

and B ≤ A ⇐⇒ f : B → A s.t. ∀b, f(b) → f(a), a ∈ A, b ∈ B.

Assuming ≤ is indeed a symmetric relation, then it must also be a bijection.
Therefore ≤ is always symmetric where |A| = |B|.

Now we must prove |A| ≤ |B| ∼ |B| ≤ |A| where |A| 6= |B|. Put more
simply, |A| < |B| ∼ |B| < |A|.

Proof by induction.

Let |A| = 0. This means |B| > 0. Let |B| = 1.

This holds true for |A| < |B| but not for |B| < |A|, giving a contradiction.
If we change our original conjecture to |A| < |B| 6∼ |B| < |A| then the base case
holds and we can move on to the induction step.

Suppose A = a ∪B, a /∈ B therefore |A| = |B|+ 1

This means |B| < |A| because |A| is always bigger than |B| by one. Conse-
quently, |A| < |B| can never happen. Therefore, < is never symmetrical and ≤
is only symmetrical when A and B are equinumerous.

3 Which of the following sets are countable?
Prove your answer.

A set is countable if it is finite or is equinumerous with N.

3.1 The set A := {n ∈ N|n ≥ 5}.
N is countable, therefore N− {1, 2, 3, 4, 5} is also countable because |N| > |N−
{1, 2, 3, 4, 5}|.

3.2 The set P(A) where A is as in 3.1.

P(A) is not countable because P(N) is not countable.

3.3 The set B := {n ∈ N| ≤ 5}.
This is countable because it is the set {1,2,3,4,5}.

3

3.4 The set P(B) where B is as in 3.3.

This is countable because it is finite.

3.5 The set of finite subsets of Z.

This is not countable because the set of finite subsets of Z is not equinumerous
with N

3.6 P(Z).

This is not countable because it is not equinumerous with N.

3.7 The set of infinite subsets of Z.

This is not countable because it is not equinumerous with Z.

3.8 The set C := {f |f : N → {0, 1, 2}}.
This set is countable because it is equinumerous with N. This is provable because
there exists a bijection f : N → {0, 1, 2}.

3.9 The set D := {(x0, ..., xn−1) ∈ N∗|n ∈ N, xi ∈ N, xi 6= xj, for
i 6= j}.

This is the set of all strings over N∗ where each string is made up of unique
natural numbers. It is countable.

4 Determine a URM program which computes
the function f : N → N, f(x) := 2 · x. Justify
your answer.

I0 = iszero(0, 5)
I1 = succ(1)
I2 = succ(1)
I3 = pred(0)
I4 = iszero(2, 0)
I5 = iszero(1, 11)
I6 = succ(2)
I7 = succ(0)
I8 = pred(1)
I9 = iszero(1, 11)
I10 = iszero(3, 6)

If R0 = 0 then 2 · x = 0. Execution jumps to I5 which jumps to I11 because
R1 is zero. This ends the execution.

If R0 > 0 then I0 returns false and execution moves to I1. I1 and I2

each increment R1 by one. I3 decrements R0 by 1. At this point, I4 checks
if R2 is zero, which it should be. This returns us to I0 and the process loops

4

until R0 = 0, leaving R1 holding double the value that was initially in R0.
At this point, I0 returns true and execution jumps to I5, which returns false,
allowing execution to flow to I6. At this point, we need to copy the value of R1

(which is now our answer) into R0. I6 increments R2 by one, which acts as a
flag, showing that the answer has been computed and is now to be moved into
R0. I7 increments R0 (which is now zero) by one. I8 decrements R1 by one. I9

checks if R1 is zero. If it is, then the answer has been moved to R0 and execution
jumps to I11, which brings us to a halt. If R1 is not zero, execution flows to
I10 which checks if R3 is zero. It will be because we haven’t used it, therefore
it returns true and executon continues from I6 until R0 holds the answer of the
computation.

5 Determine the function U(2) computed by the
following URM program U:

I0 = iszero(0, 4)
I1 = pred(0)
I2 = succ(1)
I3 = iszero(2, 0)
I4 = iszero(1, 8)
I5 = pred(1)
I6 = succ(0)
I7 = iszero(2, 4)

U (2) = f(a, b) → a + b.

5.1 Justify your answer. What happens if one omits I4−I7

from the program?

If both starting inputs, R0 and R1, are zero, then I0 returns true and execution
jumps to I4, which also returns true, jumping to I8 and ending execution.

If R0 = 0 and R1 > 0, I0 returns true and execution jumps to I4 which
returns false and execution carries on to I5, which decrements R1 by one. I6

increments R0 by one. I7 checks if R2 is zero, which it isn’t because it hasn’t
been used. Execution returns to I4 and the loop continues until the value in
R1 is in R0. At this point I4 returns true and execution ends by jumping to I8

leaving the value of R1 + 0 in R0.
If R0 > 0 and R1 = 0, I0 returns false and the answer is computed in the

same way as before, only using instructions I0 − I3 until the answer is in R1.
The answer is then moved to R0 as before.

The execution where R0 > 0 and R1 > 0 proceeds in a simlar fashion to the
previous two cases.

If I4−I7 are omitted, U (2) = f(a, b) → 0. This is because the value computed
into R1 is never moved back to R0.

6 Write a Java program which simulates a URM.

5

import java.util.*;

/**

* URM Simulator.

*

* @author Sean Handley, 320097@swan.ac.uk

* @version March 2006

*/

public class URM {

//container for registers/instructions

private ArrayList registers, instructions;

private int PC; //program counter

//inner classes defining the 3 operations

private class Succ {

private int reg;

public Succ(int reg) {

this.reg = reg;

}

public int getReg() {

return reg;

}

}

private class Pred {

private int reg;

public Pred(int reg) {

this.reg = reg;

}

public int getReg() {

return reg;

}

}

private class IsZero {

private int reg, next;

public IsZero(int reg, int next) {

6

this.reg = reg;

this.next = next;

}

public int getReg() {

return reg;

}

public int getNext() {

return next;

}

}

/**

* Initialises the simulator.

*/

public URM() {

//ArrayLists allow an infinite number of elements

//(up to the limit of the machine’s memory)

registers = new ArrayList();

instructions = new ArrayList();

PC = 0; //set the program counter to 0.

//This point to the current instruction.

}

//this is where instructions are specified

private void load() {

//EXAMPLE FROM QUESTION 4.

//Binary addition function, f(a,b) -> a + b

//set the registers with our start values

//e.g. a binary operation using the values 2 and 3

//registers.add(Index, Object);

registers.add(0,new Integer(2));

registers.add(1,new Integer(5));

//NOTE: The values must be integer OBJECTS rather

//than primitives

//(this is because we’re using an ArrayList).

7

//Instruction <identifier> = new Instruction(args);

IsZero isZero1 = new IsZero(0,4);

//all instructions must be added to the list

instructions.add(isZero1);

Pred pred1 = new Pred(0);

instructions.add(pred1);

Succ succ1 = new Succ(1);

instructions.add(succ1);

IsZero isZero2 = new IsZero(2,0);

instructions.add(isZero2);

IsZero isZero3 = new IsZero(1,8);

instructions.add(isZero3);

Pred pred2 = new Pred(1);

instructions.add(pred2);

Succ succ2 = new Succ(0);

instructions.add(succ2);

IsZero isZero4 = new IsZero(2,4);

instructions.add(isZero4);

}

private void run() {

Succ succ = null;

Pred pred = null;

IsZero isZero = null;

int whichInst = 0; //represents the instruction

System.out.println("Starting values:");

for(int i = 0; i < registers.size(); i++) {

8

System.out.println("R" + i + "=" +

((Integer)registers.get(i)).toString() + " ");

}

System.out.println();

for(PC = 0; PC < instructions.size();) {

//determine which instruction we’re executing

try {

pred = (Pred) instructions.get(PC);

whichInst = 1;

}

catch(ClassCastException e) {

try {

succ = (Succ) instructions.get(PC);

whichInst = 2;

}

catch(ClassCastException f) {

try {

isZero = (IsZero) instructions.get(PC);

whichInst = 3;

}

catch(Exception g) {

System.out.println(

"Something’s gone wrong. "

+ "Check your URM instructions.");

System.exit(1);

}

}

}

//now we have the instruction, let’s get to work on it

switch (whichInst) {

case 1:

doPred(pred.getReg());

break;

case 2:

doSucc(succ.getReg());

9

break;

case 3:

doIsZero(isZero.getReg(),isZero.getNext());

break;

default:

//do nothing

}

}

}

//fill null elements in the arraylist with zeroes when referred to

private void fillZeroes(int reg) {

int theSize = registers.size();

for(int i = theSize; i <= reg; i++) {

registers.add(i,new Integer(0));

}

}

private void doPred(int reg) {

System.out.println("[Pred][Reg: " + reg + "]");

fillZeroes(reg);

if(((Integer)registers.get(reg)).intValue() > 0) {

registers.set(reg,

new Integer(((Integer)registers.get(reg)).intValue() - 1));

}

System.out.println("R" + reg + " = " +

((Integer)registers.get(reg)).toString());

System.out.println();

PC++;

}

private void doSucc(int reg) {

System.out.println("[Succ][Reg: " + reg + "]");

fillZeroes(reg);

registers.set(reg,

new Integer(((Integer)registers.get(reg)).intValue() + 1));

System.out.println("R" + reg + " = " +

((Integer)registers.get(reg)).toString());

10

System.out.println();

PC++;

}

private void doIsZero(int reg, int next) {

System.out.println("[IsZero][Reg: " +

reg + "][Next: " + next + "]");

fillZeroes(reg);

boolean isZero = false;

if(((Integer)registers.get(reg)).intValue() == 0) {

PC = next;

isZero = true;

} else {

PC++;

}

System.out.println("(R" + reg + " = 0) = " +

isZero + ", next = " + PC);

System.out.println();

}

private void outputResult() {

System.out.println("R0 = " + registers.get(0));

}

public static void main(String args[]) {

URM urm = new URM();

urm.load();

urm.run();

urm.outputResult();

}

}

11

7 The programming language Agda has a ter-
mination checker, which checks whether the
given program is guaranteed to terminate. Prove
that we cannot write a perfect termination
checker which accepts all terminating programs.

This was originally proved by Alan Turing and employs diagonalisation and
proof by contradiction. Informally, the proof is as follows.

Suppose there is an algorithm, halts(a, i), which takes an algorithm,
a, and an input, i. If the algorithm halts on the given input, then
halts(a, i) returns true.

We then construct an algorithm, test(s), which takes a string, s, and
runs the halts algorithm as a subroutine, giving it s for both the a
and i inputs. If halts returns true then test returns false else goes
into an infinite loop.

We then run test(t) where t is the string representing the program
test.

If test(t) halts, we can assume that halts returned false, but this
would imply that test(t) should not have halted.

If test(t) does not halt, then it would imply that either halts re-
turned true, or that halts itself went into an infinite loop. Therefore,
test(t) should have halted or halt does not work for all inputs.

Turing’s proof assumes the algorithms are implemented on a Turing Ma-
chine. The Church-Turing thesis proved that any computer which can feasibly
be built is equivalent to a Turing Machine, thus all Turing Machines are Uni-
versal Machines.

12

