(CS_213: System Specification March 2006
M Seisenberger

Assignment 2: Microprocessor Specification

The Microprocessor - Overview The microprocessor you must specify is a
‘generic’ RISC processor that borrows from a number of existing architectures.
The machine is a general purpose register machine - that is, any register can be
used for any purpose (with one exception - the Zero register).

The State The state of the machine consists of the following:

e Memory. There is one memory, shared by programs and data. It consists
of bytes, and memory addresses are 32-bits long.

e Registers. There is one set of 64 general purpose registers. Each register
contains a 32-bit word. Register Zero always contains 0. That is, instruc-
tions can write results to register Zero, but they will be discarded, and
when the contents of register Zero is next read, it will contain 0.

e Program counter. A 32-bit word.

Instruction Format All instructions are 32-bits long and have the same format.
The format will consist of three register addresses and one opcode. Note that the
number of registers dictates the size of a register address. The precise instruction
format, and the assignment of opcodes to instructions, is left up to you. The
same holds for the choice: Big-Endian or Little-Endian architecture for handling
memory storage. The instructions available are listed below. In the following,
Ra, Rb and Rc refer to any register. In each instruction (except after a jump)
the program counter should be incremented by 4.

Instruction Set: Arithmetical/Logical

e ADD32 Ra, Rb, Rc: Perform the operation Ra + Rb and store the result
in Rc.

e ADDS8 Ra, Rb, Rc: As above except that only the least significant 8
bits of Ra and Rb should be added and the result stored in Rc should be
sign extended to 32 bits.

e MULT Ra, Rb, Rc: Perform the operation Ra * Rb and store the result
in Rc.



e AND Ra, Rb, Rc: Perform the operation Ra & Rb and store the result
in Rec.

e OR Ra, Rb, Rc: Perform the operation Ra | Rb and store the result in
Rc.

e NOT Ra, Rc: Perform the operation not Ra and store the result in Rc.
Rb is not used.

e SLL Ra, Rb, Rc: Perform the operation Ra << Rb and store the result in
Rc. (Ra << Rb shifts the contents of register Ra, (contents of) Rb positions
to the left and fill the new positions with ‘0’s.)

Instruction Set: Load/Store

e LLD32 Ra, Rb, Rc: Load the four bytes starting at memory address Ra
+ Rb into register Rc.

e ST32 Ra, Rb, Rc: Store the contents of register Rc at memory address
starting at Ra + Rb.

Instruction Set: Conditional/Jump

¢ EQ Ra, Rb, Rec: if Ra == Rb then store 0 in Rc; otherwise write -1 to
Rc.

e GT Ra, Rb, Rc: if Ra > Rb when Ra and Rb are considered to be unsigned
numbers, then store 0 in Rc; otherwise write -1 to Rc.

¢ JMP Ra, Rb, Rc: if Ra == 0 then store the current program counter,
incremented by 4, at memory address starting at Rb and set the program
counter to Rc; otherwise increment the program counter by 4. (Note that
this instruction could be used for both, a (conditional) jump and a (condi-
tional) jump to subroutine.)

Expected is a full specification of the Microprocessor, i.e., Modules defining
words, the instruction format, the registers, the memory, the state, etc,

A first class solution also contains a test module that runs the microprocessor.
The example run should include tests from each instruction set and contain a
jump to a subroutine and a return from it.

Submission: Please hand in your solution (yoursurname.maude) via Blackboard.



