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1. INTRODUCTION.

1.1. Overview. In this paper we present a general algebraic method for modeling micro-
processors at different levels of abstraction, and for expressing formally the relationships
between each level. We consider algebraic models of microprocessors at levels of abstraction
determined by time and by details of construction. The algebraic models are intended to
isolate some fundamental features of the scientific structure of microprocessor computation;
by which we mean formal models of their behaviour over time, and of the manipulation and
representation of data. We are particularly interested in the computational role of clocks.
The algebraic methods developed: (i) provide a basis for the formal, modular decomposi-
tion of the description of microprocessors, including correctness criteria; and (ii) support
equational specification and verification techniques for the design of microprocessors that
are relevant to a wide range of specification languages and theorem provers.

A clock is a means of dividing time into (not necessarily equal) segments; these seg-
ments are defined by steps or stages in a computation or process. We use this idea as
follows. The method is to model a computer by means of the iteration of amap f: A — A
in discrete time T'= {0, 1,2, ...}, defined by

F:TxA— A,

F(t,a) = f'(a),
fort € T, a € A. The set A is made to model the state of the computer and the function

f to model the next-state map; thus F(¢,a) is the state of the computer at time ¢t € T on
operating from initial state a € A. The computer is then modeled by the algebra

(A,T| F).

The nature of the set A of states and clock T is determined by the level of abstraction of
the computer. A typical clock would be the system clock. However, we may also consider
instruction clocks, where each cycle represents the execution of a single instruction, or
indeed any other division of time. Multiple clocks may exist in a single specification, and
clocks may be related formally. We will consider a computer at two levels of abstraction.

We show how to give an equational specification of this type of algebra using the fact
that F' is defined by primitive recursive equations over the algebra

(A, T | f,0,t+1).
In turn this algebra is constructed by building A and f from a simpler many-sorted algebra
(Bl,...,Bn ‘ 0'1,...,0'm)

which is an abstract data type for microprocessor specification.

We show that this iterated map method is a systematic technique that decomposes
the modeling of the computer into easily understood stages, represented by algebras, so
that each model can be equationally specified using initial algebra semantics.

We illustrate our algebraic tools by specifying a simple computer (based on the DEC
PDP-8). We develop a specification at the programmer’s level, and consider the imple-
mentation of this specification at the microcode level. We consider the correctness of the
microcode level specification with respect to the programmer’s level specification.



Our computer at the programmer’s level specification includes
arithmetic and logic operations;
conditional operations;
branches; and
subroutines.
Our microcode level representation includes
a two-bus datapath;
e a microprogrammed controller;

e conditional microinstructions; and

e 3 single-level microinstruction subroutine mechanism.

With these modest constructs only a short account of the verification of the processor

is possible. In this first encounter with the methods we have chosen not to consider input
and output, though we indicate how the methods can be adapted.

1.2. Background. The mathematical models describe precisely microprocessor structure
in a way that is independent of formally defined specification languages, or input languages
to theorem provers and proof checkers. By using algebraic methods we obtain semantical
models and systems of equations that are independent of specific machine-reasoning sys-
tems. The idea is that models of a system are necessary before any attempt to encode
the system into any specific input language for, for example, a theorem prover. Models
of systems, such as presented in this paper, will be representable in, and processable by,
most machine-oriented reasoning systems.

Related work on the formal specification and verification of microprocessors includes
the following.

e A simple computer, known as “Gordon’s computer”, has been considered on a num-
ber of occasions. Gordon [1983b] describes the specification, high-level implementa-
tion and verification of the computer using LCF-LSM (Gordon [1983a]); Joyce [1987]
describes and verifies the the same computer, using HOL (Gordon [1987]); and Stav-
ridou [1993] uses OBJ3 (Goguen and Winkler [1988]), though only performs a partial
verification.

e The Viper microprocessor has been specified, designed and partially verified using
HOL: see, for example, Cohn [1987], Cullyer [1987a] and Cullyer [1987b].

e An implementation of Landin’s SECD machine (Landin [1963]) is specified, designed
and verified, in HOL: see, for example, Graham [1992], Graham and Birtwistle [1990],
and Birtwistle and Graham [1990].

e The FM8501, a PDP-11-based processor, and the significantly more complex FM9001
have been specified, designed and verified using the Boyer-Moore theorem prover
(Boyer and Moore [1988]): see Hunt [1986], Hunt [1989], Hunt [1992] and Hunt [1994].
The FM9001 is also considered in Bose and Johnson [1993].

e Parts of the Inmos Transputers T800 and T9000 have been specified, designed and
verified using an Occam-based transformation system: see May et al [1992] and Ros-
coe [1992].

e Additionally, the following are of interest: Geser [1989], which discusses the Intel 8085
processor, and also Windley [1993], and Chazarain and Collavizza [1993].

A primary characteristic of the work summarised above is the dedication to a specific
language, theorem prover, or proof assistant. A specific aim of the work described in this
paper is to be independent of specific languages and systems. Furthermore, the verifications
presented in the work above are long and difficult, often amounting to a tour de force in
the application of a particular machine-based verification tool. Such techniques would be
of limited use in routine verification attempts.

For work on hardware specification and verification in general, see, for example, Gor-
don [1987], Cohn and Gordon [1990], Milne [1989], Milne [1990], Melham [1988], McEvoy
and Tucker [1990], Subrahmanyam [1988], Johnson and Zhu [1991], and Zhu and John-
son [1991], Weijland [1990], Hanna and Daeche [1993], and Melham [1993].
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This work is part of a project on the theory of verifiable synchronous concurrent al-
gorithms. A synchronous concurrent algorithm (SCA) is an algebraic model of parallel
deterministic computation where the parallelism and determinism is expressed using dis-
crete space and discrete time. The work on formal specification, of which this is a part,
is intended to support the work on SCAs by providing a basis for the formal verification
of parallel systems modeled as SCAs. The work of the SCA group encompasses meth-
odologies for specification and design; formal analysis; manipulation and verification of
specifications and designs; and software tools. For further information see Tucker [1991]
and Thompson and Tucker [1991]. For work on case studies on hardware, see Harman and
Tucker [1988a], Harman and Tucker [1988b], Harman and Tucker [1990], Harman [1989],
and Harman and Tucker [1992a]. In particular, Harman and Tucker [1988b] and chapter
7 of Harman [1989] are concerned with the specification of computers.

1.3. Contents. The structure of this paper is as follows. In §2 we discuss algebraic tools for
modeling and equational specification. In §3 we give a general account of the application
of the iterated map algebras to the modeling of program execution and implementation
in digital computers, and the relations between models of levels of abstraction. In §4 we
outline the informal specification of a simple computer. In §5 we develop an algebraic
specification of this computer. In §6 we propose an implementation of this computer. In
87, we consider the relationship between the specifications of the computer and of the
controller, and show how the different levels of timing abstraction of each can be formally
related. In §8 we outline the process of verifying the correctness of one level of abstraction
with respect to its predecessor. In §9 we sketch how our model may be extended to
accommodate direct input-output to and from a processor. In §10 we discuss problems
and further work.

The authors would like to thank J M Emmett, M Summerfield and three referees for
useful comments on a draft of this paper.

2. BASIC ALGEBRAIC TOOLS.
In this section, we introduce the algebraic ideas we need for writing algebraic specific-
ations of computers.

2.1. Abstract Data Types. The theory of modeling abstract data types by many-sorted
algebras has been extensively covered in the literature: see, for example, Meinke and
Tucker [1992], Wechler [1991], Wirsing [1990] and Ehrig and Mahr [1985].

A many-sorted algebra A consists of one or more non-empty carrier sets Ay, ..., As,
constants ci,...,cp € A;, 4 € {1,...,s}, and operations f; of the form

fitAsy X x Ay, — A

Sn+17

where i =1, ..., ¢ and s1, ..., Sn, Spy1 € {1, ..., s}

2.2. Clocks. A clock is an algebra (T' | 0, + 1) where T' = {0, 1, ...} identifies time
intervals called clock cycles, 0 denotes the first clock cycle, and ¢ + 1 allows us to count
clock cycles.

2.3. Streams. A stream s € [T — A] is a function from a clock T to a set A of data
items. A stream is a formal representation of time-separated data items. Given stream
s € [T — A], clock cycle t € T, then s(t) represents the data item arriving on stream s at
time ¢.



2.4. lterated Maps and Primitive Recursion. Let A be a non-empty set and f: A — A
be a map, and form the algebra (A | f). Let T be a clock and consider the function

F:TxA—A
that iterates f as follows: fort € T, a € A
F(0,a)=a
F(t+1,a)= f(F(t,a)).
A solution to this set Er of equations is
F(t,a) = f*(a)
that generates the sequence, called an orbit,

a, f(a), f*(a),..., fi(a),...

and which will be used to represent the behaviour of a computer in time, starting from an
initial state a.

The equations of Er are primitive recursive equations over the algebra (A,T | f,0,t+
1), see Tucker and Zucker [1988], Tucker [1991].

2.5. A Decomposition. Let A = A; x---x A, where each A;, i = 1,...,n is a non-empty
set. Consider the function F' : T x A — A as defined in §2.4. The function F' can be
rewritten

F(t,ay,...,a,) = (Fi(t,a1,...,ap), ..., Fp(t,a1,...,a0,))

fort € T, a; € A;, and where F; : T x Ay x --- x A,, = A; is the i*" component function
for F, 1 <7 <n.
Furthermore, the function f : A — A, whose iteration defines F', can be rewritten

f(a’la"'aan):(fl(alﬂ---aan)v'--vfn(a’lv---aan))

for a; € A;, and where f; : A} x -+ x A, — A; is the i*® component function for f,
1 <1< n.

Substituting these component functions for F' and f we may rewrite the equations Ep
in §2.4 as follows:

Fl(O,al, .. .,an) =ai,

Fl(t+ ]_,0,1, .. .,(J,n) = fl(Fl(t,al, .. .,an), - .,Fn(t,al, - .,(ln)),

F,(t+1,a1,...,a,) = fn(F1(t,a1,...,04),..., Fu(t,a1,...,an)).
Equations Ep, g are (simultaneous) primitive recursive equations over the algebra,
(Ala--'aAn ‘ fla"'afnaoat+1)'

See Tucker and Zucker [1993]. The following result is discussed further in Thompson and
Tucker [1991] and Tucker and Zucker [1988].
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2.5.1. Lemma. Suppose that (X, Ey) is an equational (or conditional equational) spe-

cification of
(A1, An | fre o)

possibly containing hidden sets and functions, under initial algebra semantics. Then
BoUXpU{F,...,Fr},E0UER, .. F,)
is an equational (or conditional equational) specification of
(A1, .., An, T | f1,oo oy fn, 0,6+ 1, Fy, ... FY)

and hence of
(Ay,...,An, T | F1,..., F,)

under initial algebra semantics.
In fact, the specification can be chosen to have useful term rewriting properties (e.g.
orthogonality and completeness).

2.6. Comparing Iterated Maps. Consider the iteration of two maps f : A — A and
g : B — B defined by
F:TxA—-AandG:SxB—B

where

F(t,a) = f*(a) and G(s,b) = g"(b)
forteT,a€ A, s €S and b € B. We compare these iterations below.

2.6.1. A General Case. We say G simulates F' if there are maps a: Tx A — Sx B and (3 :
B — A. such that the following diagram commutes.

TxA L 4
. P
S x B i) B
This means fort € T, a € A
F(t,a) = B(G(a1(t,a), as(t,a))),

and, equivalently, given the definition of F' and G,
FH(a) = B(g™ ™ (as(t, a))).

2.6.2. Time-Independent State Comparison. The comparison we have is of a more
specific form where time is state-dependent, but state is not time-dependent. The map «
has the following coordinate functions «y, ag respectively:

AMTxA—S
p:A— B
and we denote the map (3
Y: B — A.
In addition, we expect that
P(4(a)) = a.
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We say G simulates F' with respect to (A, ¢) and % if the following diagram commutes.

Txa ., 4

‘(X, ¢) P
G

SxB —— B

Hence fort €T, a € A B
F(t,a) = P(G(A(t, a), ¢(a))),

and equivalently

FH(a) = 9(g* 4D (4(a))).

2.7. Retimings. Specifications may contain multiple clocks which are not equivalent in
speed. Also, each cycle of a clock T need not be the same length relative to another (e.g.
standard) clock R: that is, clocks can be irregular. In §2.6 we saw that time on clock S is
determined by both time on clock T, and state A.

2.7.1. State-Independent Retimings. In order to relate multiple clocks we introduce
retimings. Let T and R be two clocks. A retiming A : T' — R is a surjective, monotonic
map. We denote the set of retimings from clock T to clock R by Ret(T,R). A typical
retiming is illustrated in Fig. 1.

NN

0 1 2 3 4 5 6 7 8
Fig. 1. A Retiming Between Clocks T and R.

Example. Observe that in Fig. 1 every cycle of clock R corresponds with the same number
k € Nt cycles of clock T. Clock T runs at exactly k times the rate of clock R, and
A(t) = |t/k]. We say such retimings are linear of length k.

For each retiming A there is a corresponding immersion A : R — T,
A(r) = (ut € T)[A(t) = 7).

The function L : [R — NT] — Ret(T, R) defines a retiming in which each clock cycle
L(x)(r) lasts z(r) cycles of clock T.

0, if t = 0;
L(a)(t) = {(,LL re R)[G(O) +a(1) + ... —|_a('r) > t], if t > 0.

The function sch : Ret(S,T) — [[T — A] — [S — A]] schedules a stream a € [T — A] by
retiming A, and is defined by
sch(A)(a)(s) = aA(s).



2.7.2. State-Dependent Retimings. Retimings may also be state-dependent. That is, for
each state 0 € B, we may define a retiming A(—, o) : T'— R. An example of such a retiming
would be that between the instruction clock T' and system clock S of a microprocessor,
where the number of cycles of S corresponding to each cycle of T' will depend on the precise
instruction to be executed, and hence on the state of the machine. Precisely such a case is
illustrated in §2.6.2, where F' represents the microprocessor at the level of the instruction
clock T, and G represents the level of the system clock S.

Further formal tools can be developed from retimings: see Harman [1989], Harman
and Tucker [1990], Harman and Tucker [1988a], and Harman and Tucker [1992a].

3. COMPUTERS AS STATE TRANSFORMERS.

We will begin by giving computers state transformer or programmer’s model specific-
ations PM, that progressively update the state of the machine. By state, we mean those
aspects of the internal structure of the computer visible to the programmer. That is, the
registers and memory that can be explicitly modified. This model is sometimes called the
architecture of the computer (Stallings [1987]). There is no requirement that these registers
and/or memory actually exist in the form seen in PM (for example, in the MC68000 each
32-bit register is implemented as a pair of physically separated 16-bit registers: see An-
ceau [1986]). However, the machine must behave as if the state components of PM were
physically present. In an actual design, there will be additional registers, hidden from the
programmer, that are necessary for the implementation of the machine. These registers
are not properly part of the specification. Additionally, we include primary memory in a
state transformer specification even when specifying, say, a microprocessor, where memory
is not an integral part of the device.

The programmer’s model specification is followed by an abstract circuit design repres-
entation AC. The abstract circuit design is a high-level representation of the implement-
ation of the microprocessor. Typically, it will consist of a decomposition into controller,
datapath and memory. Each of the components of the decomposition may contain state
information that is not present in PM.

A hierarchy of specification models may be seen emerging. First, the programmer’s
model PM, followed by an abstract circuit design AC, and further modeling the imple-
mentation in successively greater detail.

3.1. Models and Abstraction in the Design of a Computer. The role of the program-
mer’s model specification PM is to form part of a specification of some microprocessor
implementation I, for which we may require a correctness proof. We can ask: what is I,
and how is it constructed?

In the case of a complex device the design would proceed in stages, with each successive
stage a refinement of its predecessor, terminating in a set of chip masks, or other repres-
entation of the final hardware. We also admit the possibility of false trails in the design
process: ideas that later are seen as inappropriate, and explorations of alternate designs.
The design process will not be a simple trail of increasing detail: see Harman [1989], Har-
man and Tucker [1992a]. In the basic case however, we can postulate an initial abstract
circuit design AC, followed by one or more stages of detailed circuit design, and culminat-
ing in the final product: the chip mask-set, circuit board design, etc, whose characteristics
are uniquely determined by a physical system.

We may consider how far into the design process we can profitably apply formal tools
for proving correctness. Ultimately, in the design process, we must encounter real physical
devices: in current technologies, these will be transistors. The behaviour of transistors,
and other electronic components, is complex and so are accurate mathematical models of
their behaviour. Simple models of transistor behaviour exist, but are not always accurate
(Gordon [1987]), and generally contain minimal timing information. Accurate behaviour
models are useful for limited simulation, but are unsuitable for formal reasoning. Further-
more, it can be argued that the practical usefulness (we would not dispute the scientific
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value) of formal methods applied to circuits containing small numbers of transistors is
limited.

While it may not be profitable to apply formal tools to all stages of the design process,
we may certainly apply them to the abstract circuit design AC, and possibly to one or
more stages of detailed circuit design. In the case of a microprocessor, what does AC
consist of 7 We can partition a typical microprocessor into two main components: control
and datapath. Additionally, since the initial programmer’s model specification contained
memory M, we must include M in AC. However, we are not concerned with the design of
M, and we can employ the same specification as used in PM. The abstract circuit design
phase consists of specifying the control section C'T and the datapath DP, and composing
these together with M to form AC. Then we must show that AC correctly implements
PM. We may continue the design process by subdividing C'T', DP and M and specifying
their components until we reach practical limits imposed by the physical behaviour of
devices.

3.2. Computer as an lterated Map. The behaviour of a computer is described by an
infinite sequence of states over time. The state comprises the contents of the machine’s
registers and memory. Additionally, there may be streams for input and output, see §9.

3.2.1. Operational Semantics. Let C' be the set of states. Starting from some initial state
o € C, in which a program is held in memory and the program counter points to the start
of this program, the machine state evolves in time as controlled by a next state function

comp : C — C,

and a clock T. At every cycle t of the clock, comp is applied to the current state o to
generate a new state comp(o). Hence the evolution of the state of the machine from time
0 € T to time t € T is represented by

a, comp(a), comp(comp(a)), ..., comp' (o).
The machine is therefore represented by
COMP:TxC —C
defined by the equations

COMP(0,0) = o,
COMP(t+1,0) = comp(COMP(t,0)).

A solution COMP has the form
COMP(t,0) = comp’ (o).
3.2.2. Algebraic Representation. We know from §2.4 that the computer is represented
by a simultaneous primitive recursive function COMP over the algebra
(C, T | comp,0,t+ 1),
which we call the next-state algebra. The algebra
(C,T | COMP)

we call the state algebra. The algebra used to build the next-state algebra we call the
machine algebra. The state algebra represents the machine and is equationally specified
given an equational specification of the next-state algebra. In turn the next-state algebra
should be equationally specified given an equational specification of the machine algebra.



3.2.3. A Note on Time. The speed of clock T" determines the level of timing abstraction
of COMP. Typically, in the programmer’s model, T will be the instruction clock, where
each clock cycle represents the execution of a single instruction. Since instructions take
differing amounts of “real” time to execute, the instruction clock will be irregular with
respect to the system clock. The system clock is at a lower level of timing abstraction
than the instruction clock. Each cycle of the system clock represents one cycle of the
clock signal used to control the computer or microprocessor. Another possible clock is the
memory clock, in which each clock cycle corresponds with one memory access. The level of
temporal abstraction of the memory clock lies between the system and instruction clocks.
In §7 we will show how to formally map from the instruction clock to the system clock in
the case of our simple computer.

3.3. A Decomposition: General Case. Following §2.5, we may specify a particular
computer architecture at any level of abstraction by defining the state set C' and next state
function comp : C' — C. State set C' will normally be a cartesian product Cy; x --- x C,,

where each C;, 1 = 1,... n represents registers and memory. The definition of comp then
reduces to the definition of the coordinate functions comp; : C; x --- x C,, — C;, for
1 =1,...,n from which comp is constructed:

comp(cy,...,cn) = (compi(c1y..-y¢n), .- scompy(cl,y ..., cn))

and hence COMP : T x C — C:
COMP;(0,c1,...,cq) = c1,

COMP,(0,c1,...,¢q) = Cn,
COMP(t+1,¢1,...,¢n) = comp1 (COMPy(t,c1,...,¢n)y...,COMP,(t,c1,...,¢n)),

COMP,(t+1,c1,...,cn) = comp, (COMP(t,c1,...,¢n)y-..,COMP,(t,c1,...,¢pn))-

The carriers C4,..., C, and the functions comp,,..., comp, of the state algebra are
constructed from a machine algebra at a lower level of data abstraction (see §3.5).

3.4. A Decomposition: Abstract Circuit Design. Following the ideas of §2.5 and §3.1,
consider a decomposition of the state of an abstract circuit representation of a computer
into the states of its controller, datapath and memory. Let Ct be the set of states of the
controller, Dp be the set of states of the datapath and Mem be the set of states of the
memory, and suppose that

C =CtxDpx Mem

and hence for appropriate component functions
COMP s¢(t,c,d,m) = (CT(t,c,d,m), DP(t,c,d,m), MEM(t,c,m))

forallt € T, c € Ct, d € Dp, m € Mem. If the next state function has component
functions
compac(c,d, m) = (ct(c,d, m),dp(c,d, m), mem(c,d, m))

for c € Ct, d € Dp, m € Mem, then we may rewrite the equations for the computer.
CT(0,¢,d,m) = c,
DP(0,¢,d,m) = d,
MEM (0, ¢,d, m) = m,
CT(s+1,¢c,d,m) = ct(CT(s,c,d,m), DP(s,c,d,m), MEM(s,c,d,m)),
DP(s+1,¢,d,m) =dp(CT(s,c,d,m), DP(s,c,d,m), MEM(s,c,d,m)),
MEM (s + 1,¢,d,m) = mem(CT(s,c,d,m), DP(s,c,d,m), MEM(s, c,d,m)),
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The next-state algebra becomes

(Ct, Dp, Mem,T | ct,dp,mem,0,t+ 1).

3.5. Machine Algebras. The machine algebra consists of carriers (typically vectors of bits)
and functions representing ALU operations. A typical machine algebra for a microprocessor
would be constructed as follows. Let the algebra Bit consist of carrier {0,1}, constants 0
and 1, and logical operations such as and, or, not, and so on (the precise choice depending
on the architecture). Let W,, = {0,1}™. The machine algebra M is constructed by adding
to Bit carriers consisting of vectors of Bit, and special-purpose operations on these vectors:
typically
(Bit, W3, W1, Ws, | and, or, not, add, shift, sub,mul,...),

the precise choice of carriers and operations again depending on the architecture (see §5.1).

3.6. Correctness. Given a programmer’s model PM of a computer, and an abstract circuit
design AC' intended to implement PM, what conditions must be met if we are to say that
AC correctly implements PM?

The programmer’s model specification PM describes how the state ¢ € Cpjs of the
machine evolves over time. Each component of o € Cpjys may, potentially, change during
each cycle of clock T, where each cycle of T represents one instruction. The execution of
an instruction is determined by a next-state function pmcomp : Cppr — Cppr, and so

PM(t,o) = pmcomp(a).

The abstract circuit design AC behaves in a similar way, except now the state o’ €
Cac is enlarged to include registers/memory required to implement PM, and the con-
trolling system clock S is faster than clock 7. Again, computation is represented by a
next-state function accomp : Cpc — Cac, and so

AC(s,0") = accomp®(o’).

Although an element o’ of Cs¢ will contain structure and information not in Cpyy, at
the start of the execution of any instruction, that information will refer to the execution
of the previous instruction, or will be invariant between instructions (for example, the
microcode memory). Any correct implementation of PM will assume that, at the start of
the execution of any instruction, those parts of C4¢c not in Cpjs either contain “junk”,
or contain constant information. Therefore, at the start of any sequence of instructions
we can assume that the contents of those parts of ¢/ € Ca¢c not in Cpys contain either
arbitrary or pre-defined values.

Thus, suppose there exists a a projection function 7 : Cgc — Cpy, which projects out
those parts of C'4¢ also in Cpjy, and furthermore, that there is a function a, : Cpy — Cac
which “pads” those elements of C'4¢ not in Cpjps with appropriate values x. We may
suppose that for all o € Cpyy,

wag (o) = o.

Informally then, AC correctly implements PM if, given an initial starting state o €

Cpy, for any corresponding starting state o, (o) € Cac, then for each cycle of clock S
corresponding with the start of a cycle of clock T, we can compute a time X(t, o), such
that m(AC(A(t,0), az(0))) is the state of PM at clock cycle t.

Recalling §2.6, we formalise the above correctness condition as follows. Given PM :

T x Cpyy — Cpy and AC : S x Cyqeo — Cyco, we require the following diagram to

comiute.
T x CPM —P% CPM
10} T
S x CAC —AQ> CAC
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where ¢ : T X Cppyr — S X C ¢ is defined by
(b(ta U) = (X(t, J)v Oy (0-))’

oz : Cpy — Caco “pads” Cpuy to Cac, A:T x Cpy — S, and 7: Cyec — Cpuys projects
out those parts of C'4¢ also present in C'pps. Alternatively, we can express the correctness
condition as follows: for all z,

PM(t,0) = n(AC(A(t, 0), az(0))).
Recall the definitions of PM and AC as the iterated maps
pmecomp : Cppyr — Cpyr and accomp : Cac — Cac

respectively. Then the condition for correctness becomes: for all t € T, ¢ € Cpps and any
padding values x

pmcomp’ (o) = W(accompx(t"’) (az(0))).

Observe that A : T x Cpy — S qualifies as the immersion of a state-dependent retiming
(§2.6.2).

4. INFORMAL SPECIFICATION.

The machine we will specify is based on the DEC PDP-8 (Bell et al [1978]). This
machine has been used previously as a design example: for instance, see Florentin [1991],
Barbacci [1982]. In this section, we will sketch the informal specification of the machine.
Full informal specifications can be found in the literature. We will omit a number of
straightforward features of the PDP-8 that are tedious to specify: specifically, the operate
instruction, and the I-O instruction. The former deals with a range of trivial functions
that do not require a memory operand (e.g., clear accumulator). The latter deals with
input-output via streams (Harman [1989], Harman and Tucker [1990]), though these may
be added (see §9 and Harman and Tucker [1994a)).

4.1. Registers, Word Size and Instruction Format. The PDP-8 uses a 12-bit word, giving
an address space of 2'%(= 4096) words. There is a single accumulator ACC, a single-bit
link register L, used for overflow detection and shifting, and a 12-bit program counter PC.
All instructions are one word long, with format: 3-bit opcode; indirection bit; page bit;
and 7-bit page offset. The page offset only allows 128 words to be addressed, hence the
indirection and page-structured memory are used to allow access to the entire memory.
Memory is divided into 128-word pages, and the page offset can either access a word in the
first page of memory, or the page of memory containing the current instruction, depending
on the page bit. The indirection bit allows indirect memory addressing.

4.2. Instruction Set. We will specify the following instructions.

(i) AND: Bitwise-and the accumulator with the specified memory operand. The result is
stored in the accumulator.

(i) TAD: Two’s complement add of the accumulator and the specified memory operand.
The result is stored in the accumulator.

(iii) ISZ: Increment the accumulator. If the new accumulator value is zero, skip the next
instruction.

(iv) DCA: Deposit the accumulator contents at the specified memory location, then clear
the accumulator.

(v) JSR: Subroutine call. Subroutine calls store the return address in the first word of
the subroutine, and jump to the following word. To return, an indirect jump though
the first word of the subroutine is necessary.

(vi) JMP: Jump unconditionally to the word specified by the memory operand.

(vii) Undefined operation codes cause an exception, with the value of the program counter
replaced by an exception branch address.
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5. FORMAL SPECIFICATION.

We will construct a formal specification of the machine informally described in §4 in
the manner of §3.2 and §3.4. We will not give a complete formal specification, but supply
sufficient information for the reader in possession of an informal specification to complete
the process.

Following §3.2 we may construct the state algebra

(C,T| COMP)
of the machine as follows:
COMP : T xC — C,
COMP(0,¢,m) =c,m
COMP(t+ 1,¢,m) = comp(COMP(t,c, m)).
To proceed, we must define the state set C, together with the next-state function comp.
There are two 12-bit registers ACC and PC, and a single-bit register L, so we define the

state of the CPU
Cpu = A x A x Bit,

where A = W15. Memory consists of 2'2 12-bit words. Hence we define
Mem =[A — A].

Thus
C =Cpux Mem=Ax Ax Bit x [A— A

(see §3).

5.1. The Machine Algebra. Following the process outlined in §3.5, we define the machine
algebra for our example. Our machine will require the following carriers. Let A = Wi,
represent memory words, memory addresses and the accumulator. Let La = W13 represent
the result of additions. Additionally, we require Bit, the booleans B and the natural
numbers N, and the functions A : A2 — A,V : A2 — A and add : A2 — La.

In addition to ALU operations, we add the successor function for N, together with
some functions for manipulating bit vectors, converting bit vectors to N, and performing
memory substitution.

The bit field extraction functions bits;./l//;' : W; — W;, are defined by

bits;[//j(al,...,ai) =(0,...,0,a4,...,a),

1 < j <1 <i. For example, consider the case when ¢ = 12 (i.e. W; = A above), j = 6,
]—

and 12. Then

bit5€/12(0,1, ceey (l12) = (0, 0, 0, 0, 0, 0, ABy+ o oy a12).

The function pn : A — N interprets a bit vector (a1, ..., a;) € A as a natural number,
using the usual binary representation of positive integers.

The function sub:[A — A] x A x A — [A — A] is the memory substitution function,
defined by

W [ mG), ifl#i
sub(m,a,l)(i) = { a. i
We will use m[a/l] to stand for sub(m, a,l). Summarising, the machine algebra is as follows:

(Bit, A,La,A— A,B,N | A, V, add, succ, bitsf/l,pn, sub, cases, =),

with j/l € {1/3,6/12,4/4,5/5}.
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5.2. Field Extraction Functions. We define the following functions to extract the various
fields of an instruction. The opcode field is extracted by op : A — N, defined by

op(a) = pn(bitsf/3(a)).
We use pn to convert the three opcode bits into a natural number. This makes the

specification easier to read.
The page offset field is extracted by pgoff : A — A, defined by

pgoff (a) = bitsg)y,(a).

The indirection bit is extracted by indir : A — B, defined by

tt, if bitss,(a)
.. _ ) /4
anZT'(a) - {ﬁ, if bitsf/4(a)

The page bit is extracted by pgbit : A — B, defined by

1;
0.

tt, if bits? . (a)
bit(a) = Co . ol®
pgbit(a) {ﬁ, if bzts?/s(a)

Y

1
0.

I

5.3. Next-State Function. We define the next state function
comp: AXx AX Bit x [A— Al - AXx A X Bit x [A— A
as follows:

comp(a, pe,l,m) =

( (a A mwal(pc,m),pc+ 1,1, m), if op(m(pc)) = 0; (i)
(bz'tsf/“12 (add(a,l, mval(pc,m))),pc+ 1, if op(m(pc)) = 1; (i)
addy3(a,l, mval(pc, m)), m)

(a, tskip(pc, m),, if op(m(pc)) = 2; (i)
m[mual(pc, m) + 1/maddr(pc, m))]),
) (0,pc+1,1, if op(m(pc)) = 3; (iv)

mla/maddr(pc, m))),

(@, maddr(pc, m) + 1,1, m[pc + 1/maddr(pc, m)]), if op(m(pc)) = 4; (v)

(a, maddr(pe, m), L, m) if op(m(pc)) = 5 (vi)

(a, EXCEPTIONADDR, 1, m), if op(m(pc)) = 6 (vii)
or op(m(pc)) =1,

\

where EXCEPTIONADDR = (1,1,1,1,1,1,1,1,1,1,1,1), and mwval, maddr and tskip are

defined below. We explain each case briefly below.

(i) AND: the contents of accumulator a are replaced with the bitwise AND of the initial
value of accumulator a and the memory operand muwal(pc, m). The program counter
pc is incremented.

(it) TAD: accumulator a is replaced by the least-significant 12 bits of the sum of a and
muval(pc, m), and [ is replaced by the most significant bit of this sum. The program
counter pc is incremented.

(ii1) ISZ: the memory word indicated by maddr(pc, m) is incremented by one, and the
program counter is incremented by one or two (by tskip(pc,m)), depending on the
new value of the memory word.
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(iv) DCA: the accumulator a is stored at the memory word indicated by maddr(pc, m)
and the accumulator is set to zero. The program counter is incremented.

(v) JSR: the program counter pc plus one is stored at memory word maddr(pc, m), and
the value of pc is replaced by mwval(pc, m)+1.

(vi) JMP: the value of pc is replaced by mwval(pc, m).

(vii) Operation code values of 6 or 7 represent illegal instructions, and generate an excep-
tion, resulting in a branch to special memory address EXCEPTIONADDR. 1t is the
responsibility of the user to ensure appropriate error-handling code is present at this
address.

It now remains to define the subfunctions of comp.

5.4. Memory Access. We need both memory address (maddr) and read memory (mwval)
functions. We define maddr : A x Mem — A as follows:

maddr(pc, m) =

( pgoff (m(pc)), if pgbit(m(pc)) = ff and indir(m(pc)) = ff; (i)
pgoff (m(pc))V if pgbit(m(pc)) = tt and indir(m(pc)) = ff; (%)
(pc NADDRMSK),
m(pgoff (m(pc))), if pgbit(m(pc)) = ff and indir(m(pc)) = tt; (ii1)
m(pgoff (m(pc))V if pgbit(m(pc)) = tt and indir(m(pc)) = tt. (iv)

| (pc A ADDRMSK)),

where ADDRMSK = (1,1,1,1,1,0,0,0,0,0,0,0). In cases (i) and (#5) we are accessing
memory words in page zero. In cases (4i) and (iv) we are accessing memory words in the
current page, and so must extract the most significant five bits of pc and use them to
extend the page offset. In cases (ii1) and (i), we are using indirect addressing, and so
must make a memory access.

We define mval : A x Mem — A as follows.

mual(pc, m) = m(maddr(pc, m)).
We define tskip: A x M — A as follows.

pc+ 1, if mwal(pe,m) + 1 # 0;

tskip(pc, m) = {pc +2, if mval(pc,m)+1=0.

5.5. Algebraic Structure of a Microprocessor. It is easy to check that function comp
is polynomial over the machine algebra, and that therefore COMP is primitive recursive
over the machine algebra. Since the machine algebra is easily algebraically specified, the
state algebra of the computer is algebraically specified by lemma 2.5.1.

6. A MICROPROGRAMMED IMPLEMENTATION.

We now consider how COMP specified in §5 may be implemented. We will proceed in
the manner outlined in §3.1. First, we will decide on, and informally specify, an appropriate
datapath DP, and controller CT. Then we will show how DP and CT may be formalised
as iterated maps.

6.1. The Datapath. We will use the two-bus datapath, illustrated in Fig. 2.

As well as the user-visible registers ACC, L and PC, there are four further registers,
two buses A and B, the ALU and an incrementer for PC. The buses A and B are 13-bit-
wide connection paths between components of the datapath. The two buses A and B are
not equivalent, in that not all components are connected to both buses (see Fig. 2). The
memory address register MAR holds memory addresses, and is linked to the address bus.
The memory buffer register MBR, holds data to be read/written from/to memory, and is
linked to the data bus. The instruction register IR holds the current instruction, and is
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.MAR .MBR .1 IR PC ACC ALU Buf

L L

+1

Fig. 2. The Datapath DP.

linked separately to the data bus. The ALU buffer register is used as a store for ALU
results. Additionally, the results of ALU test operations are available to the controller.
To control the datapath, a total of 24 separate control signals are required. These are
classified as follows.
e Two control memory: MEM.rd and MEM.wr.
Two control MAR: MAR.A.rd and MAR.A .wr.
Four control MBR: MBR.A.rd, MBR.A.wr, MBR.data.rd, and MBR.data.wr.
Two control IR: IR.data.rd and IR.B.wr.
Three control PC: PC.A.rd, PC.A.wr and PC.increment.
Five control ACC: ACC.A.rd, ACC.A.wr, ACC.B.rd, ACC.B.wr and L.A.rd.
Four select the appropriate ALU operation.
Two control the ALU buffer: BUF.A.wr and BUF.B.wr.
The general format of these signals is

register name.bus name.operation name,

where operation is rd (read) or wr (write), except in a few self-explanatory cases.

6.2. The Controller. We will use a microcoded controller CT to control DP. To avoid
confusion, we will use microinstruction to refer to instructions of the microprogrammed
controller, and instruction to refer to instructions of COMP.

Each microinstruction will have three fields. The control field will control the operation
of DP, and will be 24 bits long (see §6.1); the sequencing field will determine which
microinstruction will be executed next, and will be four bits long; and the address field
will contain the address of the next microinstruction in the event of a branch or subroutine
call. Branch addresses will be eight bits long.

The sequencing field bits will allow the following microinstruction sequences: next se-
quential microinstruction; unconditional or conditional jump; unconditional or conditional
subroutine; and decode next instruction. The last is used when the sequence of microin-
structions to execute the current machine instruction is exhausted, and we must start a
new machine instruction. The following table shows the allowable combinations of the four
control bits.
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next I Sub. Rout. Jump Cond

0 0 0 0 Do the next sequential microinstruction.

0 0 1 0 Unconditional jump to the branch address.

0 0 1 1 Conditional Jump to the branch address.

0 1 0 0 Unconditional Subroutine call to the branch address.
0 1 0 1 Conditional Subroutine call to the branch address.

0 1 1 0 Return from Subroutine.

1 0 0 0 Start the next programmer’s level instruction.

Note that conditional jumps and subroutine calls are based on the results of ALU test
operations. Further note that only one level of subroutine call is allowed, as the return
addresses will be stored in a register. Fig. 3. illustrates the microprogrammed controller.

————
SR retum Test from ALU
control
| ——

Sequencing
1

HIR

To Datapath

Fig. 3. The Controller.

6.3. Formal Specification of DP and CT. We now consider the formal specification of
DP and CT as iterated maps. We wish to construct an algebra

(Ct,Dp,Mem, S | CT,DP,SMEM),

where Ct is the state of the controller CT, Dp is the state of the datapath DP, Mem is
the memory as in §5, S is the system clock which is faster than instruction clock 7', and
CT, DP and SMEM are iterated maps representing C'T, DP and memory over clock S.

CT :S xCtx Dpx Mem — Ct,
DP: S8 x Ct x Dpx Mem — Dp,
SMEM : S x Ct x Dp x Mem — Mem,
are defined by
CT(0,¢,d,m) = c,
DP(0,¢c,d,m) = d,
SMEM (0, c¢,d,m) = m,
CT(s+1,c,d,m)=ct(CT(s,c,d,m), DP(s,c,d,m), SMEM(s,c,d, m)),
DP(s+1,¢,d,m) = dp(CT(s,c,d,m), DP(s,c,d,m), SMEM(s,c,d, m)),
SMEM (s + 1,¢,d,m) = smem(CT(s,c,d,m), DP(s,c,d, m), SMEM (s, c,d, m)).

16



To proceed, we must define state sets C't and Dp, as well as next-state functions ct,
dp and smem.

6.4. Datapath and Controller State Sets. First, we consider Dp. Observe in fig. 2 that
the state of DP consists of six registers of size A (ACC, PC, MAR, MBR, IR and ALUBUF),
and the single-bit register L. Additionally, there is a single-bit ALU test register. Hence:

Dp=AxAxAxAxAxBitx Ax Bit.

Now, we consider C't. Observe in fig. 3 that the state of CT consists of a microprogram
counter uPC, a subroutine return address register SR, and the microcode memory. Let
uPC = Wg, let uI R = Wsg, and let cntrl = Wa4 be the control part of the microinstruc-
tion word. Let [uPC — pIR] be the microprogram memory. However, not all possible
microprogram words are meaningful: for example, it is only possible for a single register to
write to a particular bus at one time. We restrict the allowable combinations of bits in a
microinstruction as follows. First, we define functions for each bit in the microcode word:

MAR.Awr: ulR — B,...,BUF.B.wr: ulR — B

These functions are true if and only if the corresponding control bit in the current mi-
croinstruction word is true (see §6.1 for a list of control bits). We say a set B of bits
in a microinstruction is disjoint if and only if at most one of the corresponding functions

MAR.Awr: uIR — B,...,BUF.B.wr : uI R — B are true for the bits in B.
We can define a number of mutual exclusion functions

Mzapys : pWIR —B,... . Mz : pIlR — B

to restrict the microprogram memory. We define Mz, s below: the remaining four func-
tions M xppus,- - -y M X ppye are similar.

tt, if MAR.A.wr(pir), M BR.A.wr(uir),
PC.Awr(pir), ACC.A.wr(uir),
ALUBUF.A.wr(pir) disjoint;

ff, otherwise.

Mz gpys(pir) =

We can now define the set of allowable microinstruction memories pM:

uM = {um € [uPC — pIR)] | Vupc € pPC,
Mz gpus(pm(ppce)) and M xppy,s(pm(ppe)) and
Mz4co(pm(ppe)) and Mz,.(um(ppe)) and
Mz e (pm(ppe)) b

We can now define Cf%:
Ct = uPC x pPC x uM.

We construct the abstract circuit design (see §3.1) of the computer yCOMP in the
manner of §3.4. We may define uyCOMP : § x Ct x Dp x Mem — Ct x Dp x Mem as

follows:
uwCOMP(s,c,d,m) = (CT(s,c,d,m), DP(s,c,d,m), SMEM(s,c,d, m)).

It remains to define the next-state functions dp, ct and smem of the datapath, controller
and memory.
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6.5. Datapath Next-State Function. We wish to define the datapath next state function
dp: Ct x Dp x Mem — Dp.
Recall fig. 2: the datapath transfers data (including ALU operations results) between
registers and memory via two busses A and B. A simple and convenient way to model this
is via two functions dpwr which transfers data to the two busses, and dprd which transfers
data from the busses. We proceed as follows. First we define a new state-set Dp’, which
extends Dp by adding the two busses A and B:
Dp' = Dp x La x La,

where
Dp=AxAxAxAxAx Bit x La x Bit.

Recall from §3.5 that La = W;3. Then we define dpwr and dprd:

dpwr : Ct x Dp’ x Mem — Dyp/,
dprd : Ct x Dp' x Mem — Dp'.

We can then define dp in terms of dpwr and dprd as follows:
dp(c,d, m) = wq(dprd(c, dpwr(c, ag(d), m), m)),
where 74 : Dp’ — Dp is the following projection
wq(a, pc, mar, mbr, ir, 1, alubu f, test, abus, bbus) = (a, pc, mar, mbr, ir,l, alubuf, test),

and a4 : Dp — Dp’ is the padding function

aq(a, pc, mar, mbr,ir,l, alubuf, test) = (a, pc, mar, mbr, ir,l, alubu f, test, ag1, agz2),
for arbitrary constants ag1, gz € La. Observe that mgq(aq(d)) = d.

It remains to define dpwr and dprd. Since busses A and B can potentially operate in

parallel, we will define the coordinate functions of dpwr and dprd separately.
We introduce two groups of functions to manipulate bit vectors. The trimming func-

tions trim%fi : W; — Wi, j > 1, are defined by
. W
trimy (ay, ..., a5) = (@5, - -, a5)-
The padding functions padwf : W; = Wi, j <1, are defined by

W<
padWZ(al,...,aj):(O,...,O,al,...,aj).

Since dpwr is concerned with writing from the registers to busses A and B, the contents
of a,. .. test remain unchanged. Hence we just project out the appropriate elements of the
state of the extended datapath d' € Dp'.

dpwr(c, a, pc, mar, mbr, ir,l, alubu f, test, abus, bbus, m) = a,

dpwriest(c, a, pe, mar, mbr,ir, 1, alubu f, test, abus, bbus, m) = test.
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We define the coordinate functions for abus and bbus as follows.

dpwr opys (upe, sr, pm, a, pc, mar, mbr, ir, 1, alubu f, test, abus, bbus, m) =

( pad%®(mar), if MAR.A.wr(um(upc));
pad53(mbr), if MBR.A.wr(um(upc));
padL“ (pc), if PC.A.wr(um(upc));
padL“ (a), if ACC.A.wr(pm(upc));
alubu f, if ALUBUF.A.wr(um(upc));

\ abus, otherwise,

e

dpwrypys (Lpe, sr, pm, a, pc, mar, mbr, ir, L, alubu f, test, abus, bbus, m) =

pad§e(ir), if IR.B.wr(um(upc));
pad§®(a), if ACC.B.wr(um(upc));
alubuf, if ALUBUF.B.wr(um(upc));
bbus, otherwise.

We can define dprd in a similar way, except now abus and bbus remain unchanged,
and a—test may be modified, depending on the current microinstruction word.
dprdapys(c, a, pc, mar, mbr, ir, [, alubuf, test, abus, bbus, m) = abus,
dprdypys(c, a, pc, mar, mbr,ir, 1, alubu f, test, abus, bbus, m) = bbus.

We omit the definitions of the five functions dprd,.,. .., dprd;, which are similar to dprd,
below.

dprd,(ppc, sr, um, a, pc, mar, mbr, ir, 1, alubu f, test, abus, bbus, m) =

trim52(abus), if ACC.A.rd(um(upc));
trim5e (bbus), if ACC.B.rd(um(upc));
a, otherwise.

dprdarubu s (ppe, sr, pm, a, pc, mar, mbr, ir, 1, alubu f, test, abus, bbus, m) =

aluop(abus, bbus, pm(ppc)), if doaluop(pm(upc));
alubuf, otherwise.

dprdgest(ppe, sr, pm, a, pc, mar, mbr, ir, l, alubu f, test, abus, bbus, m) =

alutest(abus, bbus, pum(upc)), if doaluop(pm(upc));
test, otherwise.

Function doaluop : pI R — B is true if any of those bits in the control word that control
the ALU are set. The function aluop : La X La x uIR — La performs the operation
indicated by a control word on the contents of the A and B busses. Similarly, the function
alutest : La x La x ulR — Bit sets the ALU test bit based on the result of an ALU
operation.

6.6. Controller Next-State Function. We now consider the controller next state function
ct: Ct Xx Dp x Mem — C't.

Recall that the state of the controller is
Ct = uPC x uPC x uM.
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The following functions are used to divide up the microinstruction word. The address
portion of the microinstruction word addr : uI R — pPC is defined by

. . IR /.
addr (i) = trim!, p (1),
The control portion of the microinstruction word control : uI R — cnirl is defined by

control(i) = trim*. %, (bits‘l‘/li(i)).

The next instruction bit of the microinstruction word next: : uI R — B is defined by

er oy wIR .
neati(i) = tt, if bzts’;%?(z) =1;
B, if bitstd® (i) = o.

Similarly for jump, subrout and cond (bits 26, 27 and 28).

ct(upce, sr, pm, a, pc, mar, mbr, ir, l, alubu f, test, m) =

( (upc + 1, s, pm), if nexti(pm(ppc)) = ff and (4)
(subrout(um(ppc)) = ff and jump(um(ppe)) = ff) or
((subrout(um(upc)) = tt or jump(pm(pupc)) = tt and
cond(pm(upc)) = tt and test(s) = ff);
(addr(pm(upc)), sr, if nexti(pm(upc)) = ff and (1)
um), subrout(pm(upc)) = ff and
(Jump(pm(ppc)) = t¢ and cond(pm(ppc)) = ff or
Jump(pm(ppc)) = tt and cond(pm(upc)) = tt and

X test(s) = tt);
(addr(pm(ppc)), pc+ 1, if nexti(um(upc)) = ff and (i)
pm), jump(pm(ppc)) = ff and

(subrout(um(upc)) = tt and cond(um(upc)) = ff or
subrout(pm(upc)) = tt and cond(pm(upc)) = tt and
test(s) = tt);

(sr, sr, pm), if nexti(pm(upc)) = ff and (iv)
Jump(pm(ppc)) = tt and subrout(um(upc)) = tt;
\ (decode(ir), sr, pm) if nexti(um(upc)) = tt; (v)

Each case is explained below.

(i) If the microinstruction is not a branch or subroutine (or is a failed conditional branch
or subroutine), and not the start of the next machine instruction, increment upc.

(ii) If the microinstruction is an unconditional branch, or a successful conditional branch,
set pupc to the addr field of the microinstruction.

(iii) If the microinstruction is an unconditional subroutine call, or a successful conditional
subroutine call, set upc to the addr field of the microinstruction, and store the old
value of upc+ 1 in sr.

(iv) If both the jump and subrout fields are set, this is a subroutine return, so set ppc to
ST

(v) This is the start of the next machine instruction, so set upc to decode of the current
instruction, where decode : A — puPC'is a function we will not define, but which maps
machine instructions to some starting address in the microinstruction memory.

20



6.6.1. Microprogram Memory. To complete the specification, we should define the con-
tents of the microprogram memory. This is not possible here, because it would be too long.
However, we present a sample implementation of the AND instruction using page zero in-
direct addressing. A pseudo-assembly language format is used, where the first column
contains address labels, the second column contains the control signals to be activated,
and the third column contains control and next address information. Each line represents
the activity occurring during a single cycle of the system clock S. Parallel activation of
multiple control signals a and b is indicated by a | b, and a blank third column indicates
that the next sequential microinstruction is to be executed after the current one.

ANDOi:  IR.B.wr|ALU.comp-page-zero|PC.inc Subroutine ind-addr
MBR.A.wr|ACC.B.wr|ALU.AND
ACC.B.rd BUF.B.wr|PC.A.wr|MAR.A.rd
IR.data.rd MEM.rd next instruction

ind-addr: MAR.A.rd|BUF.A.wr
MBR.data.rd MEM.rd
MAR.A.rd MBR.A.wr
MBR.data.rd] MEM.rd return

6.6.2. Execution Time Bounds. Eight microinstructions are required to execute this
particular instruction. As a minimal condition on an implementation of a microprocessor,
we require all microinstruction sequences implementing machine instructions to terminate.
We can define the execution time bound function

FEx:Cpux Mem — S

as an upper bound on the number of cycles of clock S required for each machine instruction.
In the case of the single instruction defined above

Ex(a,pc,l,m) =

é, if op(m(pc)) = 0 and pgbit(m(pc)) = ff and indir(m(pc) = tt;

In the example above, there is a constant bound on the number of cycles of S. In general,
this will not always be the case. A weaker condition is that Ex be primitive recursive.
We can postulate machine instructions that are terminating but will not have a primitive
recursive bound on the number of system clock cycles required: consider, for example, a
machine instruction for Ackerman’s function. However, such instructions will be extremely
rare in practice.

6.7. Memory Next-State Function. Finally, we consider the memory next state function
smem : Ct x Dp x Mem — Mem.

We proceed in a manner similar to that used for the mem next state function in §5.3. New
values to be stored in memory are held in the memory buffer register mbr. The addresses
at which they are to be stored are held in the memory address register mar. We define
smem as follows:

smem(ppe, st, pm, a, pc, mar, mbr, ir, l, alubu f, test, m) =

m, if “M BR.data.wr(um(pupc));
m[mbr/mar], if MBR.data.wr(um(upc)).
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7. CORRECTNESS OF THE IMPLEMENTATION.
Recall §3.6. For uCOMP (§6.3) to be a correct implementation of COMP the following
diagram must commute:

T x Cpu x Mem CM)J Cpu x Mem

¢ ™

MP
S x Ct x Dp x Mem M& Ct x Dp x Mem

where 7 : Ct x Dp X Mem — Cpu X Mem is the following projection function
m(upe, sr, pm, a, pc, mar, mbr, ir, L, alubu f, alutest, m) = (a, pc,l, m),
and ¢ : T x Cpu x Mem — S x Ct x Dp x Mem is defined by

B(t,c,m) = (A(t,c,m), az(c,m)),

where a, : Cpu x Mem — Ct x Dp x Mem is a function which pads Cpu to construct
Ctx Dp. Recall from §3.6 that the contents of C't x Dp not in Cpu must be either invariant
between instructions, or will be the result of the execution of a previous instruction. In
either case, we may pad Cpu with constants: in the case of invariant elements (in this
case, the microcode memory) the precise value of the constants is important; in other
cases, arbitrary values are sufficient. The function «, is defined by

Ay (a, pc, l, m) = (mupc, Lsry Lpms @y PCy Tmnars Tmbrs Lir, la Lalubufs Lalutest m)a

with Tupe € ,uPC, Tsr € ,UPC, Zypm € IUMa Tmar € A; Tmpr € A; Tir € A; Talubu f € A7
Zolutest € A. Note that the microcode memory is represented by ..
It remains to define A : T x Cpu x Mem — S. Recalling §2.7, we observe that X is
the immersion of a state-dependent retiming A : S x Cpu x Mem — T. We will define A
by constructing the corresponding retiming A, and taking A to be the immersion of .
We define XTIME : Cpu x Mem — [T — N*], so that

A(s,e,m) = L(XTIME(c,m))(s),

where L : [T — NT] — Ret(S,T) is defined in §2.7. XTIME generates a stream of
natural numbers, such that given a starting state (¢, m) € Cpu x Mem, XTIM E(c, m)(t)
represents the number of system clock cycles required to execute the current instruction
at time t. XTIMFE is defined by

XTIME(c,m)(t) = ztime(COMP(t — 1,¢,m)).

The time taken for the instruction executed at time ¢ depends on the state of programmer’s
model COMP at time t — 1. Function xztime : Cpu x Mem — N determines how many
cycles of clock S the next instruction in state ¢ € Cpu, m € Mem will take to be executed
by the abstract circuit design pCOMP.

ztime(c,m) = (p s < Ex(c,m))[Tnext (L COMP (s, az(c), m))],

where e 1 Ct X Dp x Mem — B is a function that determines when execution of the
current instruction is complete, by examining the appropriate part of the microinstruction
word, and is defined by

Tneat (DC, ST, pm, @, pc, mar, mbr, ir, 1, alubu f, test, m) = nexti(upm(upc)),

where next: is defined in §6.2. and Ex : Cpu x Mem — S is the execution time bound
function defined in §6.6.
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8. OUTLINE VERIFICATION.

Given the correctness conditions defined in §7, we now outline the verification of the
Abstract Circuit Model description puCOM P with respect to the Programmer’s Model
description COMP. The proof is too long to include in full. However, we will give
sufficient detail to allow the reader to complete the process.

A key feature is that COM P and pyCOM P are iterated maps because it allows us to
simplify considerably the verification. First, we will add several concepts and results about
iterated maps that will be used to organise the proof. Then we show how these concepts
can be used in verifying implementations of iterated map systems in general. Finally we
sketch the verification of COM P. For a study of the general verification process, and in
particular the proofs of Lemmas 8.1.1, 8.1.2, and 8.1.3, see Harman and Tucker [1994b)].

8.1. Time-Consistent Iterated Maps. A function F' : T x A — A is time-consistent if,
and only if,
F(tl + tg, G,) = F(tl, F(tg, a))

8.1.1. Lemma. If F is of the form

F(t,a) = f'(a)

then F' is time-consistent.
8.2. Uniform Retimings. Given a time-consistent function F' : T'x A — A, a state-
dependent retiming A : S x A — T, with immersion A : T'x A — S is said to be uniform
if and only if A is of the form

A(0,a) =0,

At +1,a) = h(F(t,a)) + A(t,a).
Informally, the number of cycles of clock S corresponding with any cycle ¢t € T is inde-

pendent of the actual value of ¢, and is solely a function of the state of F' at time ¢, given
starting state a.

8.2.1. Lemma. Given F : T x A — A a time-consistent function, and A\ : S x A —- T a
uniform retiming, then

FO\ty + ta, a),a) = F(\t1, F(\(t2, a), a)), F(A(t2, a), ).

8.2.2. Lemma. Retiming A in §7 is uniform.

8.3. Verification Process. Given iterated maps F': T x A =+ A, and G: S x B = B, and
appropriate maps A, ¢ and 9 (see §2.6.2), we require the following diagram to commute.

TxA Ly 4

o T
G

SxB —— B

Equivalently, for all t € T, a € A, we require

F(t,a) = ¥(G(A(t; a), ¢(a))).

Our verification strategy will be induction over time. First we must prove the base case:
F(0,a) = 4(G(0, ¢(a))). (1)
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(Recall from §2.7 that A(0) = 0, and hence A(0) = 0.) The correctness of (1) should be
straightforward to establish: expanding the definitions of F' and G, (1) reduces to

a = 1(¢(a)).
The induction hypothesis is
F(t,a) = $(G(A(t, a), $(a))), (2)
and hence, the induction step is
F(t+1,a) = (Gt +1,0), 4(a))). (3)

In addition, we have the following two identities, from §8.1 and §8.2:
(i) Given that F is an iterated map, then F' is time-consistent and hence:

F(tl—l—tg,a):F(tl,F(t2,a)). (4)

(ii) Given that G is an iterated map, and hence is time-consistent, and A is a uniform
retiming, then:

G(A(t1 + t2,0), (a) = G(A(t1, Y(G(A(t2, 0), $(a)))), ¢($(G(A(t2, ), $(a))))).  (5)

8.3.1. Lemma. Gliven iterated maps F and G, and uniform retiming A, then the following
are equivalent.
(i) For allt e T,a€ A,

F(t,a) = »(G(A(t, a), d(a)).
(i) For all a € A,
F(0,a) = %(G(0, ¢(a)),

and

F(1,a) = %(G(A(1,a), ¢(a))- (6)

Proof. Trivially, (i) implies (ii). To show that (ii) implies (i), we prove the induction step
(3) above. Starting with the left hand side,

F(1,a)), using (4)
F(t,9(G(M1,a), ¢(a)))), using (6)
= Y(G(A(t G(A(1,0), 6(a)))), d(¥(G(X(1,a), 6(a)))))  using (2)

Now considering the right-hand side,

(G +1,0),4(a))) = $(G(A(E, G(A(1,a), 6(a)))), d(1(G(A(1, a), $(a)))))- using (5)

8.3.2. Corollary. Given iterated map representations of a microprocessor F' and G at
different levels of abstraction, with clocks T" and S related by uniform retiming A, to verify
that G implements F' it is sufficient to show that F' and G are equivalent at timest = s =0
and t =1, s = A(1, a).
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8.4. Verification. From §8.3 we can see that to verify that uCOM P correctly implements
COM P, we must show that for any state (¢, m) € Cpu x Mem of CPU, that

COMP(0,¢,m) = 1(uCOMP(4(0,c,m))), (1)

and that
COMP(1,¢,m) = n(uCOMP(¢(1,c,m))). (2)

Substituting in (1) for COM P and uCOM P, we obtain
(c,m) = m(az(c,m)).

Inspection of the definitions of 7 and «, (§7) shows this to be clearly true. To prove (2),
we observe that the actions of COMP and uCOMP are dictated by the values of the
opcode op : A — N, the indirection bit indir : A — B, and the page bit pgbit : A — B
(85.2), giving 32 possible outcomes. In the case that the opcode is two (Increment and
Skip if Zero), the instruction may either increment the program counter by one or two,
giving a further four cases, for a total of 36. To prove (2), we need to consider each of these
36 cases. For problems of this size, manual verification is quite practical (though of course
subject to human error). For more complex processors, machine support is required. Given
the multiple-case structure of this example, and of other microprocessors, appropriately-
directed machine verification should be quite practical, even with large examples.

Consider the example instruction of §6.6.1: the AND instruction with indirect page
zero addressing. In this case, op(m(pc)) = 0, indir(m(pc)) = tt, and pgbit(m(pc)) = ff.
Evaluating COM P(1,a,pc,l, m):

COMP(1,a,pc,l,m) = comp(a,pc,l,m),
= (a A mwal(pc,m),pc+ 1,1, m),
= (a A m(maddr(pc,m)),pc+ 1,1, m),
= (a A m(pgoff (m(pc))), pc + 1,1, m).

Evaluating m(uCOMP(¢(1, a,pc,l,m))):

m(WCOMP(¢(1,a,pc,l,m))) = n(WCOMP(A(L, a, pc, I, m), a(a, pe, 1, m))),

To complete this example, and the remainder of the verification, it would be necessary to
define the remaining functions (for example, aluop : La X La X uIR — La from §6.5) and
the remainder of the microcode.

9. ADDING INPUT-OUTPUT.

The example processor considered in this paper has no provision for input-output;
this is clearly unrealistic. Adding input-output to our model however is not difficult. Let
T be a clock, A be a set of states, [T' — W] be a set of input streams, and X be a set of
output values. We model a computer with inputs and outputs:

F:TxAx[T—-W]—AxX,
Fi(0,a,w) = a,

Fi(t+1,a,w) = f(Fi(t,a,w),w(t)),
Fs(t,a,w) = out(Fi(t,a,w)).
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The output of F' has two components, representing the state and output at time ¢, with
initial state a and input stream w. We introduce a new function out : A — X to compute
the output at time ¢: a function of the state at time t. Typically, out will be relatively
simple; for example, projecting out part of the state. The next state function f: AXW —
A at time t 4+ 1 is now a function not only of the state of the processor at time ¢, but also
of any input that arrived at time t.

The correctness condition (§7) is now as follows. Given clocks T and S, state sets
A and B, input stream sets [T' — W] and [S — Y], and output sets X and Z, we say
iterated map F : T x A x [T — W] - A x X is correctly implemented by iterated map
G:S x Bx[S—Y]— B x Z if the following diagram commutes:

TxAx[T— W] —F—> Ax X

l(X, ¢, sch) W, X)
SxBx|[S—Y] —G—> BxZ

for state-dependent retiming immersion A\ : T x A x [T — W] — S, padding function
¢ : A — B, projection function ¢ : B — A, and output map x : Z — X. Recall the
definition of sch from §2.7.

Fort €T, a € A and w € [T — A], we require

F(t,a,w) = Y(GA(t, a,w), p(a), sch(A(a, w))(w)).

Clearly, we require lemma, 8.3.1 to still hold. This is in fact the case: see Harman and
Tucker [1994a]. In addition, we must show

Fy (t’ a, w) = X(G2()‘(ta a, w)a ¢(a)’ SCh(A(a" w))(w)))

in order to complete the verification. Given that the output functions are generally simple,
this will usually be straightforward to establish: see also Harman and Tucker [1994a].

The mathematical modeling can be carried through. However the logical complexity
of the models, and of any reasoning about the models and specifications, has increased:
the streams turn our models and specifications into higher equational models and specific-
ations.

10. FURTHER CONSIDERATIONS.

We have shown how computers may be algebraically modeled as iterated maps at
different levels of abstraction, and defined what it means for a lower-level algebraic model
to correctly implement a higher-level specification. Additionally, we have applied our
algebraic tools to a case study.

The use of algebras provides a mathematically clear approach to the modular de-
scription of computers and, hence, to the analysis of their structure. By lemma 2.5.1 all
of these algebraic models can be equationally specified by using initial algebra semantics.
The study of both the algebraic models, their equational specifications, and modularisation
principles must be taken further.

Verification, as well as input-output, will be addressed in more detail in a further paper
(Harman and Tucker [1994a]). Additionally, it is necessary to consider features of real
machines that have been omitted from this case study. Examples include exceptions and
pipelined implementations. The process of modeling and verification of the components of
the computer can continue with DP and CT, each of which may be further subdivided.

The methods and tools presented have a number of advantages over other techniques.
Primarily, our algebraic tools are independent of specific machine-based languages, theorem
provers and proof assistants, while at the same time being encodable in a range of such
tools. Secondly, we emphasise models of explicit time at multiple levels of abstraction.
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Our models of time give rise to proof obligations that are simple in comparison with those
of other attempts at microprocessor verification, allowing more complex verification case
studies to be attempted.

The algebraic tools will form part of the foundations of a machine-readable language
for describing microprocessors (and other hardware and physical systems) in a modular
way. The language will be developed as part of the Esprit Working Group NADA (No 00
85 33).
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