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Abstract

This thesis investigates the theoretical basis of computation with exact real
numbers: the basics of real analysis, including metric and topological spaces
and domain theory; type-2 Turing machines and the resulting notion of com-
putability on infinite data; and methods of representing real numbers, in par-
ticular decimal expansions and signed digit streams. The topic is additionally
discussed in the context of proof theory, in particular program extraction via
realisability. Finally, an application of the theory is demonstrated by Haskell
code (improved from the original by Ulrich Berger) extracted by hand, justified
by realisability, from definitions on the proof level.
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Chapter 1

Introduction

Throughout the history of computation, many kinds of mathematical objects
have been manipulated with algorithms, but one in particular has been persis-
tently elusive: real numbers. The standard theory of computation is based on
halting Turing machines, which provides admirably for finite objects such as
integers, rational numbers and words in finitary languages; but it fails where
objects potentially contain infinite amounts of information, in particular real
numbers, despite the fact that real numbers were the original motivating exam-
ple for Turing machines [Tur36]. Those wanting to compute with “continuous”
data have had to make do with fractions: rationals, or finite-precision floating
point numbers.

To define a data type for true real numbers, we need to define exactly what
quality of real numbers it is that halting Turing machines can’t handle, and
decide what kind of relaxation of the “must halt” restriction is necessary. In
the process it becomes clear that we need a non-traditional way of writing
them down; infinite decimal expansions are insufficient. Specifically, the rep-
resentation of a Euclid-continuous function by a function on infinite decimal
expansions is not Cantor-continuous. There is a characterisation of “admissi-
ble” representations in which a representation of a Euclid-continuous function
is Cantor-continuous; this includes streams of signed binary digits.

Ulrich Berger has developed a first order definition of uniformly continu-
ous functions of signed digit streams [Ber09a], and translated it into Haskell
code, following the realisability interpretation of first order logic [BS10]. The
code additionally makes use of memoization via an isomorphism with terminal
coalgebras, described by Altenkirch [Alt01] and Hinze [Hin00b]. In this thesis,
I investigate different representations of real numbers and real functions by in-
finite data structures, and use advanced extensions to Haskell to improve this
code. In the process, it becomes clear that there is a close relationship between
the realisability method used in the code and a more direct method of memo-
izing (with the Altenkirch/Hinze method) representations of real functions by
monotone functions on finite prefixes.

Chapter 2 describes the basic theory of real numbers, specifically Euclidean
and Cantor metrics and their associated topologies. This is followed by a dis-
cussion of Weihrauch’s Type-2 Turing machines, which provide a notion of com-
putability on infinite data, including real numbers. I also give a tentative def-
inition, in terms of Type-2 TMs, of a certain class of computable corecursive

5



functions, the primitive corecursive functions, by analogy with primitive recur-
sive functions. Finally, a brief description is given of the signed digit stream
representation of real numbers, which is the representation used in our imple-
mentation.

Chapter 3 describes the extraction of programs about real numbers from
proofs of their properties in first order logic. This involves the proofs-as-
programs paradigm or Curry-Howard correspondence, in which dependently
typed functional programs correspond to first order proofs, and making use
of the realisability interpretation of logic to remove the non-computational as-
pects of such proofs, in order to produce more efficient, untyped or simply typed
programs [Ber09b]. Our implementation consists of programs extracted by this
process by hand.

Chapter 4 is concerned with memoization by means of generalised tries, by
which functions on algebraic domains can be represented as non-wellfounded
tree data structures, improving their time efficiency. Real numbers themselves
can be described as functions on algebraic data, namely as streams (functions
whose domain is the natural numbers) of signed digits, so memoization of these
functions yields a representation of real numbers as part of a more general
framework.

In Chapter 5 I bring together the various theoretical threads into a concrete
implementation in Haskell. Specific extensions and libraries are used to improve
Berger’s original code, making the connection between the proofs and manually
extracted programs more clear.

Finally, Chapter 6 summarises the research contribution of this thesis, and
suggests some possible further avenues of research beyond it.

1.1 Related work

Previous approaches to exact real number computation have involved repre-
senting a computation on real numbers by constructing an abstract expression
operating on abstract objects that represent real numbers or (in the case of
functions) real-valued variables:

• RealLib [Lam07], by Branimir Lambov, yields real number objects from
which the programmer can extract finite approximations in any of sev-
eral representations, including IEEE 754 floating point numbers, decimal
representations, and strict comparisons. The floating point representation
allows for very fast hardware computations for applications where their
precision is sufficient.

• IC-Reals [EH02b], by Addas Ebalat and others at Imperial College, uses
a representation based on linear fractional transformations on signed digit
streams.

• Norbert Müller’s iRRAM [Mül01] is based on simulation of Turing ma-
chines computing real numbers represented as converging series of open
intervals with rational endpoints. The model is in turn based on Brattka
and Hertling’s concept of a “Real RAM” [BH96].

All of these libraries are written in C++, although IC-Reals also has a Haskell
implementation.
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This thesis describes a way of computing directly with representations of
real numbers as streams of signed binary digits. There is no abstract symbolic
representation; rather, algorithms are defined directly using general language
constructs. However, when implemented in a lazy functional language (such
as our Haskell implementation), such computations are expressions (closures,
or thunks — suspended computations) built up in the object language and
evaluated at need, which bears some resemblance to the symbolic approach.

Russell O’Connor has created a library for reasoning and computing with
complete metric spaces in Coq [O’C08], using which he has implemented con-
structive real numbers and elementary real functions together with proofs of
their correctness. This metric-space-based approach is similar to the more re-
cent directions of Ulrich Berger’s project, which also involves metric spaces on
digit systems.
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Chapter 2

Theoretical background in
computable analysis

This chapter discusses the theoretical framework of real number computation:
the fundamentals of real analysis and its intersection with computability the-
ory. This is essential for understanding what form programs manipulating real
numbers must take.

2.1 Real numbers

Real numbers are, after the natural numbers, probably the most fundamental
of mathematical objects. While the natural numbers are an abstraction of fi-
nite, discrete quantities (finite cardinals) and finite positions in a well-founded
ordering (finite ordinals), real numbers are an abstraction of finite continuous
quantities and finite positions along a non-wellfounded continuum. It’s not diffi-
cult to understand how natural numbers, integers and rationals can be modelled
with a computer and operations performed on them, and there are well-known
models of computation — particularly Turing machines — that can be used to
analyse such properties of algorithms as totality (termination) and complexity
(of both time and space usage). This is because all of these sets are countable:
there exists from each of these sets S ∈ {N,Z,Q} a surjective function

f : N� S

also called an enumeration. In other words, the cardinality of the sets S is at
most that of N, namely ℵ0, the smallest transfinite cardinal number.

Generalising this concept of enumeration to partial functions f :⊆ Σ∗ →
S from words over a finite alphabet Σ further gives rise to the concept of a
language or notation [Wei00]. Intuitively, this means we can write down textual
descriptions of countable sets in a uniform way, since if Σ is a finite set, the set
Σ∗ of words over Σ is also countable. (Of course, this might not be a computable
enumeration — as in the case of all non-terminating Turing machines — in which
case any purported “Turing machine” enumerating it would have to be infinitely
complex (have infinitely many states, thus need to be described using an infinite
amount of information).)
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Fundamental as they are, real numbers unfortunately are not countable:
there is no surjective function f : N � R. This can easily be shown by Georg
Cantor’s famous diagonalisation method: given any such enumeration f , we can
construct a real number x such that there is no n ∈ N with f(n) = x. This x can
be constructed using the following (nonterminating but productive) algorithm
on infinite decimal expansions:

1. Output 01 followed by a decimal point.

2. For each n ∈ N, beginning with 0 and proceeding with n+ 1:

2.1. Compute dn, the nth digit of f(n) after the decimal point.

2.2. Choose a digit d′n ∈ {0, . . . , 9} with d′n 6= dn, and output it.

This algorithm obviously constructs a decimal representation of a real number
x such that for all n, f(n) 6= x. (Note that we need to avoid, say, outputting
0.1999 . . . if computing f produces the representation 0.2000 . . . . This property
of multiple representations exists for almost all schemes for representing the real
numbers. For the decimal expansion there are only ever two possibilities, which
are always adjacent (interpreting 0 and 9 as adjacent), so we can exclude that
digit and the adjacent ones, only choosing from among the other 8 digits.)

Although there is no enumeration of the real numbers, there are surjective
partial functions f :⊆ Σω � R for various Σ. Whereas Σ∗ means “words over
Σ”, where by “word” we mean a finite list (describable as a function w : n→ S
where n, the length of w, is a finite ordinal), Σω means “streams over Σ”,
where by “stream” we mean an infinite list defined by a first element and a tail
(describable as a function s : ω → S, where ω is the smallest transfinite ordinal).
In particular there is one for Σ = {0, . . . , 9, .}, namely the standard infinite
decimal place-value expansions: infinite strings consisting of digits d ∈ {0, . . . , 9}
and one decimal point. This notation however has some problems, making it
unsuitable for use in computation. In this project we instead use the signed
digit stream representation, which solves some of these problems. This issue is
discussed fully in section 2.4.

2.2 Computability on uncountable sets

Computability on countable sets is conventionally defined in terms of languages
and Turing machines (TMs): a function f : S → T (where S and T are count-
able) is computable if and only if there is a TM that, starting with such a
representation of x ∈ S (i.e. a word over some finite alphabet) on its tape,
halts with such a representation of f(x) on its tape. This is not a theorem, but
rather a (philosophical) definition of computability, called the Church-Turing
thesis (an equivalent formulation exists replacing TMs with Church’s untyped
lambda calculus). The set of TMs is countable, so under this definition the set of
computable functions is as well. Since a TM computing a computable function
must halt, its output can only constitute finite words in any language, so this
definition of computability is not appropriate for computation on uncountable
sets — which (over a finite alphabet) necessarily contain some elements with

1I use typewriter face for symbols in an alphabet, to distinguish them from actual numbers.
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infinite representations, because there are only countably many finite strings
over a finite alphabet.

Of course, a computation in the real world cannot make use of all the infor-
mation available in a (representation of a) real number, since that would take
infinite time, while we can only make use of finite time. We might, however,
want to run a non-terminating computation as long as we need to to get suffi-
cient information in the output. If we want a machine that performs such an
infinite computation, we want to be sure that if we stop it at any point, any
output it has already produced wouldn’t be overwritten if we ran it for a bit
longer. In other words, any finite portion of the output depends only on a finite
portion of the input (since reading all the input would also take infinite time).

To make this concrete, consider the Cantor space C of infinite sequences of
binary digits (i.e. C = N→ {0, 1}, also called 2ω or 2N). If we use the informal
definition of computability above, this translates into the following definition on
the Cantor space:

Lemma 2.2.1 (equality up to k). For k ∈ N and p, q ∈ C define

p =k q ⇐⇒ ∀i 6 k. p(i) = q(i)

Then (=i)i∈N is a series of successively finer equivalence relations on C, that is,
each =i is an equivalence relation and

i 6 j =⇒ (p =j q =⇒ p =i q).

Definition 2.2.2 (continuity of functions on Cantor space). A function f : C→
C is continuous if and only if the following holds: For all k ∈ N and sequences
p ∈ C, there exists an l ∈ N such that for all sequences q ∈ C, if p =l q then
f(p) =k f(q).

Intuitively, this means that the first l digits of the sequence p contain enough
information to compute k digits of f(p); the fact that the equivalence relations
=i are successively finer means that further specifying the input beyond l does
not affect the output up to k. A stronger version is as follows:

Definition 2.2.3 (uniform continuity of functions on Cantor space). A function
f : C → C is uniformly continuous if and only if the following holds: For all
k ∈ N, there exists an l ∈ N such that for all sequences p, q ∈ C, if p =l q then
f(p) =k f(q). The Skolem function giving this l for each k is called the modulus
of uniform continuity.

Lemma 2.2.4. If f is uniformly continuous, then it is continuous.

Proof. This is a special case of the tautology

∀p.(∀a∃x∀b.p(a, b, x) =⇒ ∀a∀b∃x.p(a, b, x)).

(This theorem is more general than Cantor space: it is true for any topolog-
ical space (more about which later).)

Lemma 2.2.5. If f : C→ C is continuous, then it is uniformly continuous.

Proof. This is a consequence of König’s lemma. The proof is folklore.
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2.2.1 Metric spaces

The above definition of continuity essentially asserts that given a continuous
function f : C→ C, if two sequences p, q are “close enough”, then f(p) and f(q)
are similarly “close”. This idea of “closeness” can be quantified using a metric.

Definition 2.2.6 (metric on Cantor space). Define a function dC : C×C→ R
by

dC(p, p) = 0

dC(p, q) = 2−n

where n is the smallest i for which p(i) 6= q(i).

We can use this to define continuity as follows:

Definition 2.2.7 (metric continuity on Cantor space). Define

Bε(p) = {q | dC(p, q) < ε},

the open ball of radius ε around p. A function f : C → C is continuous if for
any point x and positive distance ε, there is some positive distance δ such that
the image under f of any open ball of size ε around x is contained within the
the open ball of size δ around f(x):

∀x∀ε > 0.∃δ > 0.f [Bδ(x)] ⊆ Bε(f(x))

Equivalently:
∀x∀ε > 0.∃δ > 0.Bδ(x) ⊆ f−1[Bε(f(x))] (2.1)

In other words, if some y is within δ of x, then f(y) is within ε of f(x):

∀x∀ε > 0.∃δ > 0.∀y.d(x, y) ≤ δ → d(f(x), f(y)) ≤ ε

It is well known that these two typical definitions of continuity coincide:

Lemma 2.2.8. Definitions 2.2.2 and 2.2.7 are equivalent.

The Cantor space is an example of the general construction of metric space,
a set equipped with a notion of distance between elements.

Definition 2.2.9 (metric spaces). A metric space is a pair (A, d) where A is a
set and d : A×A→ R, the metric, is a function satisfying

d(x, y) > 0 (non-negativity)
d(x, y) = 0 ⇐⇒ x = y (identity of indiscernibles)

d(x, y) = d(y, x) (commutativity)
d(x, y) + d(y, z) > d(x, z) (triangle inequality)

Intuitively, the metric laws express that two different points can’t be in the
same place, each point is in only one place, direction is irrelevant to distance,
and detours are not shortcuts.

Lemma 2.2.10. The Cantor metric really is a metric.
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Proof. By definition d(p, p) = 0, and d(p, q) = 2−n (in case p 6= q) is always pos-
itive for any n ∈ N, proving non-negativity and identity of indiscernibles. The
definition is symmetric with respect to the arguments, so d is also commutative.
Without loss of generality assume d(p, q) 6 d(q, r). This means precisely p =i q
and q =j r for some j 6 i. By Lemma 2.2.1 also p =k r for some k > j (in fact
k = i because d is an ultrametric); in other words, d(p, r) 6 max(d(p, q), d(q, r))
and a forteriori the triangle inequality holds.

In general metric spaces, continuity is not necessarily equivalent to uniform
continuity, but uniformly continuous functions are always continuous (by the
same logical tautology). The important question is whether the space is topo-
logically compact, which is a sort of finiteness quality.

2.2.2 Computability and continuity

Denotational semantics

When studying the denotational semantics of functional programming languages,
we assign a Scott domain [AJ94] to each type in the language. In this usage a
domain is a set of partial values of that type, partially ordered by definedness, or
alternatively by what information they contain. It is a sort of meet-semilattice
that has some joins: a meet of a set of elements is the element containing all
the information that all of them share (possibly none), and no less; while a join
of a set of elements is the element that contains all the information that any of
them have, but no more, which obviously only makes sense if their information
is mutually consistent. Thus ‘meet’ is analogous to the binary connective ‘and’
(for x, y ∈ X, information in

d
X is in x and in y), ‘join’ is analogous to ‘or’

(information in
⊔↑

X may be in x or in y); and the ‘bottom’ element ⊥ =
⊔
∅

(the element containing all the information contained in any of the elements of
the empty set, i.e. none) is analogous to absurdity (if X is inconsistent, infor-
mation in

d
X is nonexistent). The definedness ordering (more usually called

the specialisation ordering) is x v y ⇐⇒ x = x t y, expressing the idea that
all the information contained in x is also contained in y.

As a simple example, the semantics J()K of a singleton type () (a type with
only one value) is the Sierpinski space, a domain 1 with (despite its name) two
elements: ⊥, the undefined element; and ∗, an arbitrary value distinct from
⊥ with ⊥ @ ∗. There are concepts of product and sum on domains, as well
as least and greatest fixed point operations for strictly positive functions of
domains, allowing domains representing algebraic data types (see 4.1.1 below)
to be defined using equations. For example the semantics of a type of natural
numbers is defined as the least solution to the domain equation

N = 1 + N

Using this kind of semantics, a function JfK : JσK → JτK (in other words, a
function between possibly incompletely evaluated values of the types σ and τ)
can be correctly defined in the language (as f) only if it is Scott-continuous.
Specifically, JfK is Scott-continuous if it preserves directed suprema; in other

words, JfK(
⊔↑

X) =
⊔↑

(JfK[X]) whenever X is directed (
⊔↑

means “directed
join”, that is, join with the precondition that its parameter be directed). All
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continuous functions are also monotone (more correctly monotonically increas-
ing), meaning f(x) v f(y) whenever x v y, that is, f may be able to make use
of extra information, but more information does not make it ‘change its mind’.
Continuing the simple example, consider the functions on J()K. Since this set
has two elements, there are, set-theoretically, four functions on it:

x f1(x) f2(x) f3(x) f4(x)

⊥ ⊥ ⊥ ∗ ∗
∗ ⊥ ∗ ⊥ ∗

Of these, f3 is not continuous, in fact it is not even monotone, because it
reverses the ordering, adding extra information to ⊥ but not to ∗. ⊥ represents,
among other things, nonterminating computations that yield no information;
for f3 to be computable we would need to solve the halting problem, which
is well known to be undecidable. Although f4 adds information, it does not
do so by ‘magically’ detecting that the value is ⊥ (say, by solving the halting
problem) but rather behaves the same on all inputs, and this does not prevent
it from being continuous. It is just a constant function, which is computable,
and definable in non-strict languages like Haskell (but not strict languages like
ML). f1 is another constant function. Finally, f2 is the identity function, doing
nothing with its input and passing it out unaltered and uninspected.2

Topological spaces

Continuity is the province of a branch of mathematics called topology. Topology
is usually considered in connection with geometry, where it provides a system-
atic study of boundaries, that is, limits. The original motivation is to under-
stand what it means for, say, two two-dimensional shapes to be ‘the same’,
modulo stretching of boundaries without tearing them. This ‘sameness mod-
ulo stretching’ is represented mathematically by bijective continuous functions
(homeomorphisms) between the two spaces. The term ‘continuous’ is defined
first on functions f : R→ R, where it means that f ’s graph has no ‘jumps’: as x
and y get arbitrarily close together, so f(x) and f(y) also get arbitrarily close.
Extending the concept to R2, a continuous function is one that ‘tears or merges
no holes’. We can also mix spaces: a continuous function f : R2 → R can be
described as a two-dimensional surface in 3D space that does not overlap itself
and ‘has no holes’. In any case, the proper intuition about continuous functions
is that a small change in the input gives a correspondingly small change in the
output. If a shape X has a certain number of ‘holes’ in its boundary, then
given a shape Y , if a continuous function f : X → Y exists, then Y has the
same number of holes in its boundary; if Y had more, there would be a point
where two points that are very close together on X’s boundary are far apart,
on opposite sides of the hole, on Y ’s boundary (vice versa if X has more), so
no such f could exist. In short, a continuous function is one which preserves
boundaries.

This sounds similar to the definition of ‘Scott continuity’ on domains as
defined above, of a continuous function being one which preserves ‘boundaries’
in the sense of directed suprema. In fact, if we define a Scott topology and apply
it to all domains, the two definitions of ‘continuous’ are the same. A continuous

2The example given here is adapted from [Pip08].
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function is thus one in which any finite precision of output can be obtained with
some finite precision of input; that is, we can observe finite properties with a
finite amount of effort.

Definition 2.2.11 (topological spaces). A topological space is a set S together
with a set of subsets τS ⊆ P(S) (the topology, whose elements are called open
sets) satisfying:

• ∅ ∈ τS and S ∈ τS ;

• if X,Y ∈ τS , then also X ∩ Y ∈ τS ;

• if T ⊆ τS is a set of open sets,
⋃
T is an open set.

By induction, a topology is closed under finite intersection. X ⊆ τS is a base
for τS if τS = {

⋃
O | O ⊆ X} and a subbase for τS if {

⋂
O | O ⊆ X,O finite} is

a base for τS . If X is a subbase for τS then τS is the topology generated by X.

Samson Abramsky [Abr87] (quoted by Stephen Vickers [Vic89]) remarked
that, in light of domain theory, topology is the logic of finitely observable prop-
erties. (This was inspired by Mike Smyth’s slogan “open sets are semidecidable
properties”.) Interpreting an open set as a finitely observable property — that
is, a property that, whenever it is true, we can observe that it’s true in finite
time, using a finite amount of information — we see that the axioms for a topo-
logical space reflect this; the idea is connected to the discipline of geometric
logic.

• The open set ∅ represents a property that is never true. By ‘X is finitely
observable’ we really mean ‘ifX is ever observable, it is finitely observable’,
which is vacuously true in this case.

• The open set S represents a property that is always true. It is finitely ob-
servable because if we know it is always true, we need not bother spending
any resources to test for it; and no resources at all is of course finite.

• To observe X ∩ Y , we need to observe both X and Y . If observing X
takes resources tX , and similarly for Y and tY , then observing X ∩ Y
takes resources tX + tY at worst. If tX and tY are both finite, so is
tX + tY . This extends to any finite number of finite observations, but not
infinitely many ones.

• To observe
⋃
X where X is a set of finitely observable properties, we only

need to observe one x ∈ X, no matter how many there are. In principle
the resources we need to observe

⋃
X is the minimum of the resources

needed to observe any of the x. (In practice there is some overhead in
organising X so it can be exhaustively searched.)

As an example, consider the standard topology on the Cantor space:

Definition 2.2.12 (Cantor topology on Cantor space). Let

P = {p :⊆ N→ {0, 1} | ∃k ∈ N.(∀i < k.p(i) ↓) ∧ (∀i > k.¬(p(i) ↓)}.

be the set of all prefixes of binary sequences (p(i) ↓ means “p is defined at i”).
For each prefix p ∈ P define the set of its infinite extensions

σp := {σ ∈ C | ∀i ∈ N. p(i) ↓=⇒ p(i) = σ(i)}
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Then β := {σp | p ∈ P} (the set of basic opens) is a base for the Cantor topology.

As is well known, the notion of continuity induced by this topology is the
same as those defined before. For another example, the real numbers R:

Definition 2.2.13 (standard topology on R). A subset X ⊆ R is an open
interval iff

X = {z ∈ R | x < z < y}

for some x, y ∈ R with x < y. This is usually abbreviated (x, y). The set of all
open intervals is a base for the Euclidean topology on R.

Note that the term ‘open interval’ is an arithmetic notion specific to R and is
defined without reference to topology; whereas ‘open set’ is a topological notion,
so called for the historical reason that R was among the first topological spaces
defined and its open sets happen to be ‘open’ in the arithmetic sense.

As it happens, both C and R are topological spaces in a very natural way:
both have a notion of distance (they are metric spaces), and any metric space
has a canonical topology.

Lemma 2.2.14 (metric on R). Define

dR(x, y) = |x− y|

This function is a metric.

Definition 2.2.15 (topology generated by a metric). Let (X, d) be a metric
space. Define

β = {Bε(x) | x ∈ X,R 3 ε > 0}

where Bε(x) is the open ball of radius ε (with respect to the metric d) around
x. Then β is a subbase for a topology τd, the topology generated by the metric
d.

Lemma 2.2.16. The standard topologies on R (Euclidean) and C (Cantor) are
the ones generated by their respective metrics.

There are various standard ways to construct new topologies, for instance:

Definition 2.2.17 (subspace topology). Let (X, τ) be a topological space and
X ′ ⊆ X. The subspace topology on X ′ is

τX′ = {o ∩X ′ | o ∈ X}.

That is, the open sets in the subspace topology are all the open sets of the
parent topology restricted to X ′.

Note that some of the opens in the subspace topology may not be open in
the parent set. For example:

Definition 2.2.18 (standard topology on the unit interval). I := [−1, 1] = {x |
−1 6 x 6 1} has the subspace topology as a subset of R.

Lemma 2.2.19. [−1, 0) = {−1} ∪ (−1, 0) is open in I but not in R.

Proof. [−1, 0) is (−2, 0)∩ I and is therefore open in I, but is not a union of open
intervals.
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The theory of topology is set up specifically to make the following definition:

Definition 2.2.20 (continuity). Let S and T be topological spaces and f :
S → T a function between points of the space. The inverse image under f of a
subset t ⊆ T is defined by

f−1[t] := {x ∈ S | f(x) ∈ t}.

Then f is continuous iff the inverse image of every T -open set is an S-open set:
for all t ∈ τT , f−1[t] ∈ τS .

It is immediately evident that this definition is the same as the definition
for metric spaces (2.1).

For a function to be computable (as defined in the next section), it must at
least be continuous:

Proposition 2.2.21. If f : C→ C is computable, then it is Cantor-continuous.

Similar results apply to many sets, for example:

Proposition 2.2.22. If f : I→ I is computable, then it is Euclid-continuous.

This second result holds for similar reasons to the first. Now the Euclidean
topology on I does not look much like a Cantor topology, so one would think
the arguments are inapplicable. This is because there is no specification here
that the real numbers are a sequence of some sort for which a Cantor topology
might make sense. Actually, real numbers as mathematicians think of them
are not usually concretely pinned down like this, but rather they just posit
the existence of some set of abstract “real numbers” and assume it has the
properties that they want. The question of whether a set with these properties
actually exists is a foundational question; it must be answered in the affirmative
for results about real numbers to make sense, but once that is done, what the
set concretely consists of is not interesting for most applications. As computer
scientists we are however deeply interested in foundational questions like this,
since to implement a mathematical idea it has to be built completely from the
ground up.

2.3 Type-2 computability

As noted previously, the usual definition of computability, using terminating
Turing machines operating on finite strings over a finite alphabet, is inappropri-
ate for uncountable sets, where necessarily some data must be represented with
infinite strings. Weihrauch [Wei00] similarly extends the concept of computabil-
ity to uncountable sets in a fairly simple manner: where a function ranges over
an uncountable set (represented by infinite strings), he relaxes the requirement
that a TM computing a computable function must terminate, but it must still
produce output. At the same time, it still makes no sense for a computable
function on countable sets to not terminate. This dichotomy is resolved by im-
posing a type on the input and output of a TM, and computability is defined
differently at different types according to whether it ought to halt or be infinitely
productive. The requirement for a reliable output also means that the definition
of TM must be modified to stop it from overwriting output that has already
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been produced. The result is type-2 Turing machines and the associated type-2
theory of effectivity. (The property of a machine that neither halts nor loops
without output was called circle-free by Turing himself in his original paper on
a-machines [Tur36]).

Weihrauch’s Turing machines are defined as follows.

Definition 2.3.1 (Turing machines). A Turing machine consists of

• a finite input/output alphabet Σ with a special symbol  (“blank”), and
a work alphabet Γ ⊇ Σ ∪ { };

• k input tapes, numbered 1 to k, for some k;

• N − k work tapes, for some N > k, numbered k+ 1 to N , infinite in both
directions;

• an output tape, numbered 0;

• a flowchart3 operating on the tapes, with actions

– halt;

– i:left and i:right, which move the head on tape i respectively left
or right;

– for each a ∈ Γ, i:write(a), which writes a on tape i;

– for each a ∈ Γ, i:if(a), which branches depending on whether the
head of tape i is over the symbol a.

The following restrictions apply to the flowchart:

– i:left is only allowed if i is a work tape.

– i:write(a) is not allowed if i is an input tape.

– 0:write(a) is only allowed for a ∈ Σ, and must be followed by
0:right.

The restrictions guarantee that the input tapes are one-way, read-only tapes,
and that output once written cannot be erased or overwritten; in other words,
input is immutable and output is final. Since the definition is meant to be equiv-
alent to conventional Turing machines, it is implied that the flowchart must be
finite (corresponding to finitely many states and hence a finite transition func-
tion). (The restrictions on the input tape do not restrict the set of computable
functions since input that has been read can just be copied to a work tape, but
they make the machines easier to reason about.)

Definition 2.3.2 (type-2 machines). A Type-2 Turing machine is a Turing
machine with input/output alphabet Σ and k input tapes together with a type
specification (Y1, . . . , Yk, Y0) (Yi ∈ {Σ∗,Σω}) specifying whether each input tape
contains finite or infinite strings and whether the output is finite or infinite.

3The definition in [Wei00] does not explain more precisely than this what a “flowchart” is.
We assume what is meant is a state transition diagram with each edge labelled by a sequence
of these actions; and nodes labelled i:if(a) which have two outward transitions, corresponding
to “yes” and “no”.
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Definition 2.3.3 (type-2 computability). The initial configuration for a Turing
machine on input (y1, . . . , yk) is as follows: each yi is placed immediately to the
right of the head on input tape i, and all other cells are blank. Define

1. if Y0 = Σ∗: fM (y1, . . . , yk) = y0 ∈ Σ∗ if and only if, on input (y1, . . . , yk),
M halts with y0 on its output tape.

2. if Y0 = Σω: fM (y1, . . . , yk) = y0 ∈ Σω if and only if, on input (y1, . . . , yk),
M computes forever and writes y0 on its output tape.

Then a partial function f :⊆ Y1×· · ·×Yk → Y0 is called computable if and only
if for some type-2 machine M , f(x) = fM (x) for all x ∈ dom(f).

This definition excludes two cases in particular:

1. If Y0 = Σω and M halts on input x, fM (x) is undefined (because its output
y0 /∈ Σω).

2. If, on input x, M writes some output (maybe none) and then computes
forever without writing any output, fM (x) is undefined (because it does
not halt, and its output y0 /∈ Σω).

Theorem 2.3.4. If f :⊆ Σa1 × · · · × Σak → Σa0 (ai ∈ {∗, ω}) is computable
(according to Definition 2.3.3), then it is continuous (with respect to the product
topology for the input, using the discrete topology if ai = ∗, and the Cantor
topology if ai = ω).

Proof. Let f be computed by the type-2 machine M . We show that f is con-
tinuous, meaning f−1[S] is open in the input space for all sets S that are open
in the output space. It suffices to show this for all basic opens S (associated
with either a point (for a0 = ∗) or a prefix (for a0 = ω)). We choose S defined
by the word w0, which is either the complete result (for ∗) or a finite prefix of
it (for ω); in each case we show that the inverse image of this set is open. (A
basic open that isn’t defined by any result or finite prefix of a result lies entirely
ouside f ’s range, so the inverse image of such an open is empty and therefore
open.) Fix input (y1, . . . , yk) ∈ dom(f) ⊆ Y := Σa1 × · · · × Σak .

Case a0 = ∗: A basic open in Σ∗ is a singleton {w}. Let M halt with wi to
the left of the head on each tape i (i ∈ {0, . . . , k}). Since the input and
output are immutable, wi is a prefix of yi; furthermore w0 = y0 = f(~y)
by assumption. Because the input tapes are one-way and immutable, wi
is exactly the portion of yi that M makes use of, in particular it does not
use any part of yi beyond this prefix, so f−1[{w0}] = w1Σa1×· · ·×wkΣak ,
which is open in Σa1 × · · · × Σak .

Case a0 = ω: A basic open in Σω is the set wΣω of all infinite extensions of a
word w. Consider a configuration of M during computation of f(~y) (i.e.
after some finite number of steps) such that wi is to the left of the head on
each tape i ∈ {0, . . . , k}. By finality of the output tape, w0 is a prefix of
f(~y), i.e. f(~y) ∈ w0Σω (a basic open set in Σω). By the fact that the input
tapes are one-way and immutable, M has read precisely the prefix wi v yi
for each input tape i, in other words f−1

M [w0Σω] = w1Σa1 × · · · × wkΣak ,
which is open in Σa1 × · · · × Σak .
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2.3.1 Computably continuous vs. primitive recursive

Any computable function has a computable modulus of continuity. It is in-
teresting to ask whether we can reverse this implication, or if not, what extra
condition is needed. In standard computability theory we define a primitive
recursive function f : Y → Σ∗ (Y := (Σ∗)k) as one which either is one of a
given set of basic functions, or (inductively) can be defined either by iteration
at most σ(x) times (where σ(x) is the Gödel number of the input x) of some
previously defined primitive recursive function or by composition of previously
defined primitive recursive functions. More generally, a non-basic f is p.r. iff it
can be defined either by composition or by at most A(n)(σ(x))-fold iteration (for
some n) of some previously defined p.r. function(s), where A is the Ackermann
function (every function A(n) is p.r. by construction). That is, once we know x
we can substantially restrict the time available to Mf for computing f(x), such
that M will nonetheless always halt before we force it to. Consider the following
oracle TM with type (Σ∗,Σ∗,Σ∗), where Σ := ΣMf

∪ {⊥}) (⊥ /∈ ΣMf
), and a

numeric representation σ of the domain of the word function computed by Mf :

Input: a description of a TM Mf of type ((ΣMf
)∗, (ΣMf

)∗); a number n rep-
resenting a branch of the Ackermann function; a string w ∈ (ΣMf

)∗ encoding
a set of inputs for Mf . Any TM computing a p.r. function with strictly finite
input and output can be translated into such a TM (given an appropriate Σ).

1. Compute A(n)(σ(w)), storing the result on a work tape.

2. Simulate Mf on input y, writing its output on a second work tape. After
each transition, check whether the value on the first work tape is 0. If so,
output ⊥ and halt. Otherwise, decrement it.

3. If Mf halts (namely after not more than cf (x) transitions), copy the out-
put work tape to the output tape and halt.

A(n) is like an alarm clock: we set the alarm for A(n)(x), and it goes off
when it reaches 0. If f is primitive recursive, Mf exists and there is a branch
A(n) of the Ackermann function which tells us how high to set the alarm such
that this TM never outputs ⊥, but always halts with the value of f(x) on its
output tape before the alarm goes off. In other words, it is a universal TM
for primitive recursive functions, but an ‘anti-universal’ TM for non-primitive
recursive functions (it fails to compute any such).

Similarly, for functions f with infinite input, we can define a function f :
C → C to be ‘primitive corecursive’ if it is computed by some TM Mf with
some cf , a “modulus of primitive corecursion”, such that cf (i) is an upper limit
on the number of steps required to compute the ith symbol of the output of
Mf , and A(n) majorises cf for some n. It is equivalent to say that A(n) itself
is a modulus. Consider the following TM with type (Σ∗,Σ∗,Σω,Σω):

Input: a description of a type-2 TM Mf of type ((ΣMf
)ω, (ΣMf

)ω); a number
n representing a branch of the Ackermann function; a string w encoding a set
of inputs for Mf (3 input tapes). Any type-2 machine with infinite output and
at least one infinite input can be translated into a TM of this type (given an
appropriate Σ).

1. Set i := 0 (i records the number of symbols of output produced so far).
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2. Compute c := A(n)(i)−A(n)(i− 1) (setting A(n)(−1) := 0).

3. Simulate Mf on input y until it produces one symbol of output. Send this
output straight to the output tape. After each transition, check whether
c = 0. If so, halt. Otherwise, decrement it.

4. Increment i and go to step 2.

Again, this is a universal TM for primitive corecursive functions but anti-
universal for non-primitive corecursive ones. Here is the connection to com-
putable continuity:

Theorem 2.3.5. If f is primitive corecursive, then it is computably continuous
(has a computable modulus of uniform continuity).

Proof. Any TM takes at least i steps to read i symbols of input, so a modulus
of primitive corecursion is also a modulus of Cantor (uniform) continuity. Since
the A(n) that majorises the modulus is also a modulus and computable, there
is also a computable modulus.

Just as not all computable functions on countable sets are primitive recur-
sive, it is probable that not all computable functions on uncountable sets are
primitive corecursive. All that is required for a function to be computable is
that after outputting a symbol, the machine runs for a finite number of steps be-
fore outputting another symbol. There is no particular reason why its modulus
of primitive corecursion must be computable, or even exist: while the number
of steps required to output the (n+ 1)th symbol must be finite, it need not be
bounded by a computable function of n. But we do know that running for a
finite number of steps implies reading a finite number of input symbols, which
obviously implies Cantor continuity as a prerequisite.

Another notion of primitive corecursion has been defined by Leivant and
Ramyaa [LR], in an equational style, in contrast to this machine-oriented style.
At present it is unknown how the two definitions are related.

2.4 Representation of real numbers

There are various methods for constructing the real numbers from other sets;
Dedekind cuts and Cauchy sequences of rational numbers are well known ones.

Definition 2.4.1 (Cauchy sequences). A Cauchy sequence is a sequence (xi)i∈N
of elements of a metric space such that for any ε > 0, there is a k such that
d(xi, xj) < ε for all i, j > k.

Cauchy sequences in general metric spaces do not always converge to an
element of the space; the property that they do is called Cauchy completeness.
R is Cauchy complete, but Q with the same metric is not. In fact, R is the
Cauchy completion of Q: the set of (equivalence classes of) Cauchy sequences of
rational numbers is isomorphic to R. A symbolic representation of real numbers
in the form of infinite digit streams is essentially a notation for Cauchy sequences
of rational numbers.
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2.4.1 Infinite decimal expansions

The ‘standard’ representation of real numbers is as infinite strings of decimal
digits di ∈ {0, . . . , 9}. There are a finite number (say n + 1) of digits before
the decimal point, and an infinite number after it. Call this language IDE,
for ‘infinite decimal expansion’. Each digit has an index: those before the
point have a non-negative integer index i < n, those after the point a negative
integer index i ∈ Z \N. The streams are interpreted via the semantic functions
σ : {0, . . . , 9} → R and σ : IDE→ R (given the same name for convenience):

σ(0) = 0

σ(1) = 1 etc.

σ(a) =

i=n∑
−∞

σ(ai)× 10i

With this semantics, if we interpret a finite prefix as a real number by setting
all the remaining digits to 0, an infinite decimal expansion ai with n+ 1 digits
left of the decimal point notates the Cauchy sequence

c0 = an × 10n

ci = ci−1 + an−i × 10n−i i > 0

The decimal representation is convenient, but only because it is familiar.
If we use it with Type-2 TMs, we get a notion of computability that excludes
some functions that should obviously be computable. For example, x 7→ 3x is
not computable. 0.333 . . . should map to either 0.999 . . . or 1.000 . . . . Suppose
a machine attempting to compute this function does output 0.999. If the next
digit is 4, the machine must go back and overwrite the 0 with a 1, but cannot
because the output tape is one-way. Nor can it delay producing output until
it is sure the output is unambiguous, because for some inputs, in particular
0.333 . . . , it may delay forever and so not produce any output at all. Allowing
the output tape to be overwritten allows this function to be computed, but, as
Weihrauch says, “such machines are useless in practice, since no finite initial
part of an infinite computation gives a reliable result, in general.”4 In short,
the Euclidean-continuous function x 7→ 3x is not Cantor-continuous for this
representation (two close input values do not require commensurately similar
amounts of inspection to produce each digit of their corresponding outputs).

The problem is as follows. Define the successor function on digits in the
obvious way, up to 9 (suc 0 = 1, suc 8 = 9). Note, again, the distinction
between symbols (in typewriter face, e.g. 9) and actual numbers (in ordinary
serif face, e.g. 9). We can interpret finite prefixes ai (−∞ < i ≤ n) as real
intervals by extending the semantic function σ as follows (simplifying slightly
to omit the decimal point):

σ′(an . . . a0.a−1 . . . a−m) =
∑i=n
−m ai × 10i

σ(wam9
k) =

[
σ′(wam9k), σ′(w(suc am))

)
am 6= 9

σ(wam) = [σ′(wam), σ′(w(suc am))) am 6= 9

σ(9k) =
[
σ′(9k), σ′(10k)

)
This defines the meaning of a finite prefix w in terms of the range of meanings
of its infinite extensions. Figure 2.1 illustrates the situation.

4This, including the quotation, is Example 2.1.4.7 in [Wei00].
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Figure 2.1: Half-open intervals defined by decimal prefixes

The problem with the decimal representation is precisely that the intervals
don’t overlap. When a TM outputs a digit, it knows that the value it is com-
puting is definitely in the associated interval. But if the value it is computing
is very close to the boundary between the two intervals, it cannot commit to
either interval until it has enough information — and in the case of the extreme
lower end of one of these half-closed intervals, no finite amount of information
is enough.

The signed digit stream representation (previously used in [EH02a] and
[MRE07]) solves this problem.

2.4.2 Signed digit streams

An infinite stream of digits di ∈ {−1, 0, 1} represents a real number in the unit
interval x ∈ I:

σ(a) =
∑
i≥0

ai × 2−(i+1)

To represent real numbers, we pair a signed digit stream a with a rational
number q, and interpret σ(q, a) = q + σ(a). The intervals described by these
digits are illustrated in Figure 2.2.

Figure 2.2: Half-open intervals defined by signed digit stream prefixes

Like the decimal representation, a TM producing a signed binary digit com-
mits to one of these intervals. Unlike the decimal representation, if the value it
is computing is close to a boundary, it can still commit to a digit, because there
is some digit such that only finite information is required to determine that the
value is definitely within that digit’s interval.
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Chapter 3

Realisability and program
extraction

In this chapter I discuss the process of extracting programs from constructive
proofs, using the realisability interpretation of constructive first order logic,
which was used to produce the implementation described in chapter 5. The
process makes use of the Curry-Howard correspondence between logic and func-
tional programs, which I therefore also describe.

3.1 The Curry-Howard correspondence

When writing a program, we often want to prove properties of it. For example,
we might want to guarantee that the output of a sorting function is a list with
the same elements as its input in order; or, less trivially, that a concurrent
algorithm has no race conditions and cannot deadlock. The former is an example
of an algebraic property, which I will restrict myself to for now. (Given an
appropriate calculus, the latter might also be an algebraic property, but such
calculi are beyond the scope of this thesis.) Here are some examples of algebraic
properties:

Definition 3.1.1. Let X be a set. Define lists of X of length n as functions
l : n̄ → X where n̄ = {0, 1, . . . , n − 1}. Abbreviate this by List(X,n). Define
List(X) = {l | ∃n ∈ N. l : List(X,n)}. Let f : List(X)→ List(X) be a function.
Let 6 be a linear ordering on X.

1. f is a permutation if any list l contains the same elements as f(l). Con-
cretely, for any list l : n̄→ X there is an injective function f̃l : n̄→ n̄ that
translates indexes of f(l) to indexes of l, i.e. such that f(l)(i) = l(f̃l(i))
for all i ∈ n̄.

2. A list l is ordered if it is monotone, i.e. if for all i, j ∈ N, if i 6 j then
l(i) 6 l(j).

3. f is a sorting if it is a permutation and f(l) is ordered for all lists l.
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We can prove order properties of f , l etc. using predicate logic. The (nor-
mal1) form of a proof depends on the form of the definition:

1. To prove that f is a permutation, let l be a list, without assuming anything
else about it, and define a function f̃l : N→ N and prove that it is injective;
then let i ∈ n̄ and prove f(l)(i) = l(f̃l(i)).

2. To prove that a list l is ordered, let i, j ∈ n̄, further assume that i 6 j,
and prove that l(i) 6 l(j).

3. To prove that f is a sorting, first prove that it is a permutation; then let
l be an arbitrary list and prove that f(l) is ordered.

As a thought experiment, suppose we make proofs first-class algebraic ob-
jects. Then we can think of proofs as objects, and implications as translating
proofs into proofs:

1. To prove that f is a permutation, define a function f̃l : N → N and also
construct a proof of the conjunction

f is injective ∧ (∀i ∈ n̄.l(i) = l(f̃l(i))).

2. To prove that l is ordered, define a function that accepts a proof that i 6 j
and uses it to construct a proof that l(i) 6 l(j).

3. To prove that f is a sorting, construct a proof of the conjunction

(f is a permutation ∧ ∀l ∈ List(X).f(l) is ordered),

that is, a proof that f is a permutation and a function that, given a list l,
constructs a proof that f(l) is ordered.

3.1.1 Propositions vs. types, proofs vs. values

If we follow through with the thought experiment, we see how proofs begin to
look like functional programs. A proof resembles a function that takes as param-
eters proofs of whatever assumptions it makes and parameters instantiating any
universally quantified variables, and returns a proof of the property it is trying to
prove, including witnesses to any existentially quantified propositions. A proof
proves a proposition, which is the ‘type’ of the proof, resembling the type of the
object that the proof resembles. This resemblance is called the Curry-Howard
correspondence, after the logicians Haskell Curry [Cur34] and William Alvin
Howard [How80]. Consider the ordinary types in a purely functional language,
say, the simply typed lambda calculus with algebraic data types:

• Truth >, which has only one (trivial) normal-form proof, resembles a
singleton type 1.

• Falsehood ⊥, which (in a consistent logic) has no proof, resembles an
empty type 0.

• A conjunction P ∧Q resembles a product P ×Q.

1Proofs do not always have normal forms, but for the sake of illustration we pretend they
do.
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• A disjunction P ∨Q resembles a sum P +Q.

• An implication P ⇒ Q resembles a function type P → Q.

• A negated proposition ¬P is the same as a proposition P ⇒ ⊥ asserting
that P implies the absurd, which resembles a function type P → 0.

To prove a proposition P , we construct a value2 of the type that P resembles.
So to prove a conjunction P ∧Q we prove P by constructing a value of the type
corresponding to P , and Q by constructing a value of the type corresponding
to Q, and pair them together (such a pair being a value of type P ×Q, the type
corresponding to P ∧Q). If P corresponds to X, the circumstances under which
we can prove P resemble the form of values of type X:

• We can prove > under any circumstances. A value of type 1 is available
everywhere, namely its only value ∗.

• We can never prove ⊥, unless we made inconsistent assumptions (like
P ∧¬P ), the proof isn’t syntactically valid, or we used an invalid argument
(for example we used modus ponens with the wrong premise, or circular
reasoning), which isn’t really a proof. Values of type 0 have no form at
all, unless our parameters couldn’t possibly all exist at the same time and
we’re actually living in a fantasy world (like (x, f) : P × (P → 0), then
f x : 0); or the program has a syntax error, is ill-typed, or contains an
infinite, unproductive loop, and so isn’t really a value.

• We can prove P ∧Q whenever we can prove both P and Q with no extra
assumptions. A value of P×Q takes the form of a pair, whose constituents
are a value of type P and a value of type Q, which we produce using the
same set of parameters.

• We can prove P ∨Q whenever we can prove one of P or Q with no extra
assumptions; then we use the left or right introduction rule. A value of
type P+Q takes the form of a value of type P or a value of type Q, usually
together with a label saying which it is, which we produce with (some of)
the current parameters. (Note the remark about normal forms; in non-
constructive logics we can prove a disjunction without proving either of
its components.)

• We can prove P ⇒ Q whenever, given exactly one extra assumption P in
addition to whatever other assumptions we’ve made, we can prove Q. A
value of P → Q takes the form of a function which takes a parameter of
type P and uses it, along with whatever other parameters are in scope, to
produce a value of type Q. (‘Scope’ here means static lexical scope.)

(To be precise, a logical introduction rule for P resembles a data constructor
with P as result type.)

Dependent type theory (introduced by Per Martin-Löf [ML80]) extends the
correspondence to predicate logic. At this stage the boundaries between the

2Mathematicians usually talk about ‘objects’. Here I use the term ‘value’ instead, in
deference to the tradition in the functional programming community of avoiding confusion with
the term ‘object’ from object-oriented programming languages; and also because propositions
are ‘objects’ in a sense, but certainly not values.
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universes of proposition, proof, type and value begin to blur; in particular,
propositions begin to refer inextricably to types and values, and types and
proofs begin to refer to values as well, and even treat propositions and types in
some ways as if they were values.

• A predicate P applied to a value, type, proposition or proof x (i.e. P (x))
resembles a polymorphic type F a. The circumstances under which we can
prove a proposition P (x) depends on what exactly x is and what exactly
P asserts about it. The form taken by a value of type F x depends on
what exactly x is and what use F makes of it.

• A universal quantification ∀x ∈ X.P (x) resembles a dependent product
Πx : X.F x. To prove ∀x ∈ X.P (x), we let x be an arbitrary value in
the set X and prove P (x). A value of type Πx : X.F x takes the form
of a function that takes a parameter x of type X and uses it, along with
whatever other parameters are in scope, to produce a value of type F x.
Notice that the precise type F x depends on the parameter x.

• An existential quantification ∃x ∈ X.P (x) resembles a dependent sum
Σx : X.F x. To prove ∃x ∈ X.P (x) we construct a value x using the
current assumptions and prove x ∈ X and P (x). A value of type Σx :
X.F x takes the form of a pair, whose constituents are a value x of type
X and a value of type F x. Notice that the type of the second constituent
depends on the first constituent (not just its type).

3.1.2 Proof-irrelevance and computational content

Dependently typed languages (an example being Agda [Agd]) take full advan-
tage of the Curry-Howard correspondence as it applies to predicate logic. Since
types can refer to values, they allow a huge variety of properties (propositions
about data) to be stated (as types), and proved (as programs). Many types
may be empty when all their variables are instantiated, and for many of those,
all the programmer cares about a value of that type is that it exists, not what
form it takes. These correspond to pure propositional types, as opposed to data
types.

The idea that one proof is as good as another, that we only care whether it
exists or not, is called proof irrelevance. For example, as I mentioned earlier,
most mathematicians only care that a set R exists that has the properties of the
real numbers, not how those properties are proved (at least in their day to day
work with real numbers). But if we want to define a data type corresponding
to the ‘proposition’ R, we need to know the details of some of those proofs,
because different proofs will correspond to different values/programs and result
in a different implementation. Nonetheless, some properties are only extra in-
formation that we can use to optimise the implementation or prove that it is
correct, and we don’t need them after compiling the program. Such proper-
ties are said to have no computational content, the programming counterpart to
proof irrelevance.
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3.2 Program extraction

3.2.1 Using Curry-Howard directly

Since proofs resemble programs, it is appropriate to ask what program any given
proof resembles. For example, take the following proposition:

Proposition 3.2.1. For any l ∈ List(N, n) (n ∈ N), there exists a list l′ ∈
List(N, n) which is a sorted permutation of l.

Definition 3.2.2. A list l : List(X,n) is a sublist of a list o : List(X,m) iff
there is a monotone injective function õl : n̄ → m̄ with l(i) = o(õl(i)) for all i.
In other words all the elements of l are in o in the same order.

Definition 3.2.3. The tail of a list l of length n+ 1 is its sublist l′ of length n
defined by l′(i) = l(i+ 1) for all i. In other words the tail is just l with its first
element removed.

Proof of proposition 3.2.1. Let l ∈ List(N). Proof proceeds by strong induction
on n, the length of l.

• Case n = 0. Set l′ = l. This is trivially a permutation and vacuously
sorted.

• Case n = n′ + 1. Let l6 be the largest sublist of the tail of l such that
l6(i) 6 l(0) for all i > 0, similarly l>. Let m6 and m> be their respective
lengths. m6 and m> are both strictly less than n, so by the induction hy-
pothesis each sublist has a sorted permutation, respectively l′6, l′>. Then
set

l′(i) =


l′6(i) if i < m6

l(0) if i = m6

l′>(i−m6 − 1) if i > m6

Since 6 is transitive, l′6(i) 6 l(0) < l′>(j) for all i, j. Further, since l′6 and
l′> are both sorted, so is l′. Since 6 is total, l(i) = l′6(j) or l(i) = l′>(j)
for some j for all i > 0. Therefore l′ is a permutation of l.

What program does this resemble? Examine the proof step by step. First,
we figure out what type of program it is. The proposition is a universal quan-
tification over natural numbers and lists of that length, so the program is a
(dependently typed) function taking a number and a list as arguments:

Πn : N.Πl : List(N, n). · · ·

The quantified proposition is an existential, so the function’s output is a (de-
pendently typed) pair of a list and a value corresponding to the property that
it satisfies, which is that the output list is a sorted permutation of the input.
Semi-formally, the type is:

SortedList(l, n) := Σl′ : List(N, n).l′ is a permutation of l × l′ is sorted

So the whole type of the program is

Πn : N.Πl : List(N, n).SortedList(l, n)
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Now, to the proof. First of all, it is a function:

λn : N.λl : List(N, n). · · ·

The proof then proceeds by induction on n. The strong induction (or well-
founded induction) axiom asserts: if Q(n) whenever Q(i) for all i < n, then
Q(i) for all i. The strong induction axiom schema is

(∀n ∈ N.(∀i ∈ N.i < n⇒ Q(i))⇒ Q(n))⇒ ∀i ∈ N.Q(i)

for any given Q. This resembles the type of the wellfounded recursion operator
for natural numbers, which we will call wfrec; in fact, it is identical apart from
replacing ‘∀’ with ‘Π’ and ‘∈’ with ‘:’:

(Πn : N.(Πi : N.i < n→ Q(i))→ Q(n))→ Πi : N.Q(i)

(This operator is not extracted directly from a proof of wellfoundedness of <,
but can be derived indirectly. It is a sort of fixpoint operator that provides an
inductive proof that the program will terminate. The base case for induction
is provided by the fact that i < 0 is false for all i.) We need to use it with
Q(i) = Πl : List(N, i).SortedList(l, i), that is, at the following type:

(Πn : N.(Πi : N.i < n→ Πl : List(N, i).SortedList(l, i))
→ Πl : List(N, n).SortedList(l, n))

→ Πi : N.Πl : List(N, i).SortedList(l, i)

This is an exceedingly complex type, containing a lot of sub-types with no
computational content. Similarly, the program of this type (quicksort) is littered
with proof-terms that we only need to be sure the program is correct. These
correctness annotations, as we can think of them, are only needed when we are
writing the program; we could remove the proofs and have a perfectly valid
program.

3.2.2 Using realisability

I mentioned earlier that in non-constructive logics we can prove a disjunction
without proving either of its components. The converse property of a construc-
tive logic, that every proof of a disjunction is a proof of one of its components,
is called the disjunction property. Similarly, in constructive logics but not non-
constructive ones, every proof of an existential includes a witness (the existential
property). S. C. Kleene, an intuitionist, invented realisability in an attempt to
characterise this without resorting to meta-proofs [Kle45]. Kreisel’s modified
realisability simplifies the idea by using typed lambda calculus [Kre59]. A sym-
bolic object realises a proposition, and in modified realisability additionally
each proposition P has an associated type τ(P ) of potential realisers. Berger’s
uniform realisability [Ber09b] is the variant used here. Here are some examples:

• 2 : Nat realises the proposition 2 ∈ N;

• if x : X realises a proposition P and y : Y realises Q, then the pair
〈x, y〉 : X × Y (of a product type) realises the conjunction P ∧ Q, and
inlx : X + Y and inr y : X + Y (of a disjoint union type) realise the
disjunction P ∨Q;
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• if f(x) : Y realises Q whenever x : X realises P , then the function f :
X → Y (of a function type) realises a proposition P → Q;

• if x : X realises A(y) for some y, then x realises ∃y.A(y);

• if x : X realises A(y) for all y, then x realises ∀y.A(y).

Notice that in the existential and universal cases, the type of potential realisers
does not depend on the quantified variable y, as it does in Kleene and Kreisel’s
versions of realisability; a realiser of ∀x : X.∃y : Y.P (x, y) is not a Skolem
function f : X → Y satisfying ∀x : X.P (x, f(x)), but rather just a realiser of
P (x, y) for all x and some y that depends on x.

There are also rules that discard proof-irrelevant, or more precisely non-
computational, formulae: if A is non-computational, then (for example) the
type τ(A ∧ B) of realisers of A ∧ B is the same as the type τ(B) of realisers
of B. Essentially, the process discards the first order and non-computational
parts, yielding simple (as opposed to dependent), non-trivial types of realisers.

We can use modified realisability as a process for extracting programs from
proofs. A proof is not only a definition of an algorithm, but also a proof that it
is correct. We only need the proof to show that the algorithm is correct, but the
proof and definition may be intertwined. With realisability we can extract just
the algorithm. An interesting example is the wellfounded recursion operator
mentioned before. Let WfR(a) := Σ <: a× a.Wf(<) be the proposition “there
exists a wellfounded relation on a” (Wf(<) meaning “< is wellfounded”). Then,
given a set a and a predicate P over a, the wellfounded induction schema (which
essentially says “if there is a wellfounded relation on a then induction is valid
for a”) is the proposition

∀〈<, p〉 ∈WfR(a).
(∀x ∈ a.(∀y ∈ a.y < x→ P (y))→ P (x))→ ∀x ∈ a.P (x)

Using Curry-Howard directly, given types a and P realising respectively a and
P , a wellfounded recursion operator should have the type

Π〈<, p〉 : WfR(a).
(Πx : a.(Πy : a.y < x→ P (y))→ P (x))→ Πx : a.P (x)

Applying realisability, on the other hand, we find WfR(a) is non-computational,
and the propositions involving its components are discarded along with the first
order part (the Πs), leaving us with this type:

(P → P )→ P

which is the type of a fixpoint combinator. In other words, the program ex-
tracted from the wellfounded induction schema is general recursion! The fact
that a program extracted from an application of wellfounded induction is ter-
minating is not needed at run time, and is therefore not present.

3.3 Coinduction

In §2.3.1 I used the term ‘primitive corecursive’. By analogy with ‘primitive
recursive’ this suggests there is a class of ‘corecursive’ functions of which it is a
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subset, as primitive recursive functions are a subset of the recursive functions.
The counterpart for corecursive functions of the property of termination for
recursive functions is productivity: a correct corecursive function must produce
some output (but not necessarily all of it) after a finite amount of time.

On the logic level, we define induction and coinduction on strictly positive
operators Φ := λX.P (P a predicate, in which X may appear free but not in the
premise of any implications) via least and greatest fixed points (with respect to
set inclusion) of these operators (µΦ and νΦ, respectively). These are defined
via the following axioms:

Closure Φ(µΦ) ⊆ µΦ Induction Φ(Q) ⊆ Q → µΦ ⊆ Q
Coclosure νΦ ⊆ Φ(νΦ) Coinduction Q ⊆ Φ(Q)→ Q ⊆ νΦ

(Co)closure and (co)induction simply define µ and ν. So for example the set of
natural numbers

N := µX.{0} ∪ {x+ 1 | X(x)}

is the least fixpoint of the strictly positive operator

Φ(X) := {0} ∪ {x+ 1 | X(x)}.

For example, 0 ∈ 1 = Φ(∅) = {0} and also 0 ∈ Φ(Φ(1)) — Φ yields a set that is
a superset of its argument. The induction axiom expresses the fact that µΦ is
the least fixed point of Φ, the smallest set for which Φ does not yield a strictly
larger set.

The application for our purposes is in the definition of real numbers. The
unit interval is the set

C0 := νX.{(i+ x)/2 ∈ I | SD(i) ∧X(x)}

where SD := {−1, 0, 1}, the signed digits. A realiser of this set is a coinductive
data type τ whose elements consist of a digit and a τ , i.e. streams of digits.
Note that C0 defines a set of real numbers, but its realisers are not reals but
streams whose relation to the reals is defined by the realisability interpretation
to be exactly the semantic function σ defined earlier.

This is in fact just a special case, the general case being:

Cn = νX.µY.{f | ∃d(f [In] ⊆ Id ∧X(vad ◦ f)) ∨ ∃i∀dY (f ◦ avi,d)}

which is a coinductive definition of uniform continuity for n-ary functions; its
realisers are coinductive data structures which are isomorphic to functions f :
In → I, via an isomorphism similar to the memoization isomorphism described
in Chapter 4. (vad and avi,d are defined in Section 5.2.2; Cn is introduced and
treated more fully in [Ber09a].)
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Chapter 4

Background on memo tries

This chapter describes the method used for memoization of functions on real
numbers. Real numbers are interpreted as streams of digits; mathematically,
they are functions p : N → D. We exploit the interpretation of functions
with algebraic domain of [Hin00b] as coinductive data structures, specifically
generalised tries, to recover the ‘data-ness’ of real numbers. The approach addi-
tionally uses this memoisation scheme for functions over real numbers, making
them more time-efficient for close values.

4.1 Memoization à la Hinze

Hinze [Hin00b] describes a general method for defining a memo function f :
A → Z for any (inductive) algebraic data type A and any type Z, by defining
an associated type of generalised trie (also called prefix trees). This is a lookup
table whose shape is determined by the domain A; it is similar to finite maps
implemented as ordered trees (e.g. Haskell’s Data.Map), except that the trees
are infinite in general (each trie has as many nodes as the domain has elements).

4.1.1 Memo tries

An algebraic data type is one of the sets generated from the following operations:

• singleton sets 1 = {∗} (“unit type”);

• sums, or coproducts, X + Y for algebraic data types X and Y ;

• products X × Y for algebraic data types X and Y .

Sums and products are unique up to isomorphism. With morphisms inherited
from Set, algebraic data types therefore form a category with all finite products
and all nonempty finite coproducts (all finite coproducts with the addition of
empty types).1 The motivation behind [Alt01] is, in essence, to discover whether

1Data types in a programming language are usually concrete categories over Dcpo, the
category of directed-complete partial orders and monotone functions, or its subcategory with
only Scott-continuous functions; but there are no coproducts in such a category because they
are not unique — both separated and coalesced sums exist. I am glossing over this technicality
here.
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the category of algebraic data types also contains certain exponentials Y X (or
X ⇒ Y ). The conclusion is that it does contain those exponentials where X is
inductive, and therefore such function types are represented by algebraic data
types (specifically, terminal coalgebras).

In a Cartesian closed category C with finite coproducts, the following laws
apply (for all objects X, Y and Z): [AHS90]

• Z1 ' Z

• ZA+B ' ZA × ZB

• ZA×B ' (ZB)A

where ' means “is isomorphic to”. More generally, these laws hold whenever
the relevant objects exist, regardless of Cartesian closure, by the definition of
exponential objects. By structural induction, if A and Z are algebraic, then
ZA is isomorphic to an algebraic data type Â(Z). We can interpret Â(Z) as a
container of values of type Z. Then we don’t care that Z is algebraic any more,
and use Â simply as a lookup table for arbitrary types, keyed by the type A.
We call these lookup tables generalised tries (after [Hin00a]) or tries for short.

Obviously for types with infinitely many elements, such as trees and lists,
such tries will be infinitely deep; that is, the type is not inductive, rather it
is coinductive. (Algebraic types can be described quite generally as finitely
branching trees, meaning that the values in an infinite set of values of the same
type will be arbitrarily deep; by König’s lemma this means the representative
tries will be infinitely deep.) Categorically speaking the type of tries keyed on
a type which is an initial algebra (i.e. least fixed point) for some functor is
the terminal coalgebra (i.e. greatest fixed point) for a ‘canonical’ other functor.
Specifically, if X is the initial algebra of the functor FX , define F̂X as this
associated functor, namely:

• F̂1 (1 being any terminal object) is the identity functor idC. (Every object
is a fixed point of idC.)

• F̂X+Y is the product of functors F̂X × F̂Y , i.e. ΛZ.F̂X(Z)× F̂Y (Z).

• F̂X×Y is the composition of functors F̂X ◦ F̂Y , i.e. ΛZ.F̂X(F̂Y (Z)).

• F̂µX.FA′ (X) (the functor for the least fixed point of the functor FA′) is the

greatest fixed point functor ΛZ.νX.F̂A′(Z)(X).

(These definitions come from [Alt01]. Any of these definitions can be replaced by
naturally isomorphic functors.) The functor F̂A is the generalised trie functor
for A, and F̂A(Z) is the type of generalised tries keyed by values of type A and
storing values in Z.

Examples

The Peano natural numbers N are defined algebraically as

N = µX.1 +X

which is the initial algebra (i.e. least fixed point) of the functor

FN(X) = 1 +X.

34



The above isomorphisms, more formally stated, imply that

F̂N(Z) = F̂µX.1+X(Z))

= νX.Z ×X

i.e., the type of infinite streams of Z’s. In this case replacing ν with µ yields
the empty set, showing that tries cannot in general be inductive types.

The type of finite lists of natural numbers is

List(N) = µX.1 + N×X
= µX.1 + (µY.1 + Y )×X

and its associated trie type is

F̂List(N)(Z) = F̂µX.1+(µY.1+Y )×X(Z)

= νX.Z × (ΛW.νY.W × Y )(X)

= νX.Z × (νY.X × Y )

In this table we have:

• an entry for the empty list, which gives a single result in Z;

• an entry for nonempty lists. This is a table with

– an entry for lists starting with 0, which is a table for the rest of the
list;

– an entry for lists starting with S(n), which is a table for n.

4.1.2 Memoization using tries

Suppose we have such a table τf : F̂A(Z), with the property that the position
indexed by a : A stores the value f(a) : Z (where f : A → Z). Then we can

define a function f̂ : A → Z which takes the parameter a : A and looks up
the corresponding f(a) : Z stored in τf . Now f = f̂ extensionally, but not

intensionally, since f̂ is defined in terms of F̂A(Z), so it may have different
operational semantics. This operational semantics can be much more time-
efficient since f̂ doesn’t need to do any work, but only needs to look up a value
in a table.

Obviously if we are to implement such a function in a programming language,
the type F̂A(Z) has to be lazy, with f̂ building only those parts of τf that it
actually looks at, or else it will enter an infinite loop trying to build τf . Then

computing f̂(a) for the first time has the side effect of computing the value

f(a) that it is expecting to find. This gains nothing immediately; but if f̂(a) is
computed again, the computation of f(a) is avoided. This technique, of caching
computed values of a function for use later, or more precisely, of converting a
function to do this, is called memoization.

With F̂A(Z) in particular, we know that there exist isomorphisms

trie : ZA → F̂A(Z)

untrie : F̂A(Z)→ ZA.
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By ‘isomorphism’ we mean ‘isomorphism up to extensional equality’. In other
words untrie ◦ trie is not the (intensional) identity, but rather it maps functions
to functions that are extensionally equal. This implies the existence of a function

memoize : (A→ Z)→ (A→ Z)

defined by

memoize(f) = untrie(trie(f))

The specification of this function is that it is extensionally equal to the identity
function, but produces f̃ from f by building a trie representing f and returning
the lookup function for this trie as a closure. In a lazy language this instead
creates a thunk (suspended computation) for the root of the trie, which is then
run when f̃ (more specifically, the function untrie used in its definition) tries
to pattern-match on it. This thunk then creates the skeleton for the top level,
then creates thunks for each branch and continues running only the branch it
needs for the specific value it is currently looking up. In this way only those
parts of the trie actually exist in memory which have been visited on the way
to values of f which have already been computed.

4.1.3 Memoization of functions on signed digit streams

Let D be a finite set of digits (for example the signed binary digits SD =
{−1, 0, 1}), D∗ the set of finite lists of digits (i.e. finite approximations of real
numbers), Dω the set of streams of signed digits (representing a real number, as
described in chapter 2), and x̄ : Dω a digit stream representing x. (Convention:
the bar¯is a representation by infinite streams, the tilde˜an approximation of
the representation by finite prefixes.) A uniformly continuous function f : I→ I,
interpreted as an (abstract) function f̄ : Dω → Dω, can be represented by a
particular

f̃ : D∗ → D∗

such that

∀x ∈ R.f̄(x̄) = f(x)∧
lim|x̃|→∞ f(x̃) = x̄∧
∀x̃, x̃′.x̃ v x̃′ v x̄⇒ f̃(x̃) v f̃(x̃′) v f̄(x̄)

where v denotes prefixes. That is, f̃ approximates and converges to f̄ , and
is monotone with respect to prefixes: giving it longer input does not make it
‘change its mind’.

Then a memoized version f̂ of f̃ is a function such that

1. f̂ is extensionally equal to f̃ ;

2. for every x : D∗, for every x′ : D∗ with x v x′, whenever f̂(x) has

already been computed, the computation of f̂(x′) looks up the part of the
computation already done for x rather than doing it again.
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This combination is possible precisely because f is uniformly continuous: at a
particular output precision, variations in the input that are within the precision
given by the modulus of continuity for f (that is, that only affect digits after
a particular length of prefix) do not affect the value of f up to that precision
(that is, do not change the prefix of the value up to that length).

Realisability extracts a tree from a proof of a proposition Cn(f) which is very
similar to the memo tries F̂D∗(ξ) (where ξ is the trie for Cn−1). The following
diagram illustrates the idea:

f : R→ R

representation
mmmmm

vvmmmmm proof of u.c.
RRRRR

((RRRRRR

f̄ : Dω → Dω

finite approximation

��

C1(f)

realisability

��

f̃ : D∗ → D∗

memoization

��
trie(f̃) : F̂D∗(D

∗)

untrie

��

C1f : τ(C1)

isomorphism

��
f̂ : D∗ → D∗ ∼= fC1

: τ(C0)→ τ(C0)

Put another way, τ(C1), which is a coinductive type of trees representing uni-
formly continuous functions with domain I of infinitely large objects, seems to
be isomorphic to F̂D∗(D

∗), a coinductive type of trees representing continuous
functions with domain D∗ of finite objects. A data structure essentially identical
to τ(C1) is described in [HPG09].
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Chapter 5

Prototype implementation

In this chapter I describe Haskell code implementing the predicates Cn, in par-
ticular the improvements I made. These mostly take the form of organising the
code and using advanced language extensions to make the code take on a form
that more closely resembles the proofs.

5.1 Implementing memo tries in Haskell

5.1.1 Generic Haskell: polytypic programming

Shortly before Altenkirch’s paper [Alt01], Ralf Hinze covered much the same
ground from a more practical point of view [Hin00b]. Andres LÃ¶h et al have
created Generic Haskell (GH), a dialect of Haskell which enables what he calls
polytypic programming. This is a form of polymorphism in which functions, and
associated data types, are defined by induction over the structure of the type.
For example, the type of memo tries is defined as follows (note this is a definition
on the meta-level, not GH itself):

TABLE〈∗〉 = ∗ → ∗
TABLE〈k → l〉 = TABLE〈k〉 → TABLE〈l〉
Table〈a〉 = tablea
Table〈t :: k〉 = TABLE〈k〉
Table〈t u〉 = (Table〈t〉)(Table〈u〉)
Table〈Λx.t〉 = Λtablex.Table〈u〉
Table〈µa.t〉 = µtablea.Table〈t〉

where a is a type that has its memo trie triea defined separately. Essentially this
extends the Haskell concept of pattern matching on data to the type (and kind)
level. Like pattern matching, this generic approach is only suitable for types
where there is no significant abstraction from the concrete representation. For
abstract types this approach may distinguish values we want to consider equal;
for example given a rational number type implemented as a pair of integers,
two rationals may be the same but not use the same integers if one is in lowest
terms and the other isn’t. The atomic type clause considers this by allowing
trie types to be defined in an ad hoc fashion for such types (where in contrast
the generic portion is in a sense parametric). Similarly it allows definition of
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tries for (some) types that don’t fit this pattern, or that are more efficient than
the default, such as for hardware integers.

5.1.2 Multi-parameter type classes with functional depen-
dencies

In my undergraduate dissertation I was unable to get Generic Haskell to work, so
I instead implemented memo tries using relatively ‘ordinary’ multi-parameter
type classes with functional dependencies. This is a relational approach to
declaring associated types, borrowed from the theory of relational databases:
A class MemIso with two parameters is interpreted as a relation on types a
and f , and a functional dependency, written a → f , asserts that this relation
is functional, i.e. for each a there is at most one f . This then allows type
inference, when it finds an instance involving a, to choose the f given by this
instance unambiguously. In the case of MemIso, the relation is that the functor
is (extensionally) naturally isomorphic to the codomain functor (→) a:1

data MIso a f z
= MIso {trie :: (a → z )→ f z

, untrie :: f z → (a → z )}
class MemIso a f | a → f where

memIso :: Iso (a → z ) (f z )

Then primitive type constructors are defined for each of the type operations
(unit, sum, product) and associated combinators for their isomorphisms (whose
definitions are elided here for space):

type One = ()
data x :+ y = Inl x | Inr y
type x :∗ y = (x , y)

newtype OneT z = OneT {fromOne :: z }
data (f :+: g) z = PlusT {outl :: f z

, outr :: g z }
newtype (f :∗: g) z = TimesT {fromTimes :: f (g z )}
oneI :: MIso One OneT a
plusI :: MIso a f z → MIso b g z → MIso (a :+ b) (f :+: g) z
timesI :: MIso a f (g z )→ MIso b g z → MIso (a :∗ b) (f :∗: g) z

instance MemIso One OneT where
memIso = oneI

instance (MemIso a f ,MemIso b g)⇒ MemIso (a :+ b) (f :+: g) where
memIso = memIso ‘plusI ‘ memIso

instance (MemIso a f ,MemIso b g)⇒ MemIso (a :∗ b) (f :∗: g) where
memIso = memIso ‘timesI ‘ memIso

The last two instances look ambiguous, but the type (and hence implementation)
of memIso as used on the right hand sides of the equations can be inferred
automatically in all four cases, due to the functional dependency.

1Of course, the isomorphism constraint trie . untrie = id is not expressible in Haskell, so
it is left as an informal proof obligation for the programmer. In the Data.MemoTrie library
GHC is told to rewrite trie (untrie x) → x during optimisation (if rewrite rules are turned
on), and apart from anything else, the constraint is required for this rewriting to be sound.
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Currently, multi-parameter type classes with functional dependencies are
the best-established method of declaring associated types; they have been im-
plemented in major Haskell implementations since about 2001 (having been
proposed by Mark Jones in 2000 [Jon00]).

5.1.3 Indexed type families

As I was completing my dissertation in 2007, another approach to associated
types called indexed type families [Cha+05][CKP05][Sch+08] was beginning to
be implemented in the Glasgow Haskell Compiler (GHC). Here an associated
type is declared as part of a class, in the same way as class methods (although
they can be declared outside classes). Support was unstable and experimental
at this stage, so I opted not to use them, but they have since become more
stable and usable. In July 2008, Conal Elliott uploaded to Hackage [Hac] (the
official repository of Haskell packages) the module Data.MemoTrie. This defines
the following class:

class HasTrie a where
data (:→:) a :: ∗ → ∗
trie :: (a → b)→ (a :→: b)
untrie :: (a :→: b)→ (a → b)

Infix type operators such as (:→:) are themselves an extension, not available in
ordinary Haskell; they make ‘function-like’ types such as this a lot easier to read
(otherwise we would have something like Trie a b)). In the library are defined
instances for standard algebraic types: () (unit), binary tuples (i.e. products)
and Either (binary sums / disjoint unions):

instance HasTrie () where
data () :→: a = UnitTrie a
trie f = UnitTrie (f ())
untrie (UnitTrie a) = λ()→ a

instance (HasTrie a,HasTrie b)⇒ HasTrie (Either a b) where
data (Either a b) :→: x = EitherTrie (a :→: x ) (b :→: x )
trie f = EitherTrie (trie (f . Left)) (trie (f . Right))
untrie (EitherTrie s t) = either (untrie s) (untrie t)

instance (HasTrie a,HasTrie b)⇒ HasTrie (a, b) where
data (a, b) :→: x = PairTrie (a :→: (b :→: x ))
trie f = PairTrie (trie (trie . curry f ))
untrie (PairTrie t) = uncurry (untrie . untrie t)

This leads to much clearer type signatures: with functional dependencies one
must choose an arbitrary type variable to represent the trie functor, and it may
be unclear which variable is the functor for which domain type; whereas with
type families the relationship is made explicit ‘inline’ by the functional notation.
The declaration is also more compact, with the trie types and their methods
grouped together. Examples illustrating this are given in the next section.
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5.2 The code

When I started this project, my supervisor had been preparing a paper entitled
“From coinductive proofs to exact real arithmetic”. This was a very large paper,
containing a lot of ideas, definitions, lemmas and proofs, all in one document.
(His published paper by this title, [Ber09a], includes only some portions of the
draft paper.) He had implemented a prototype of the ideas in the draft in an ad
hoc fashion, by manually extracting programs from the definitions and proofs
in his draft paper using realisability (see Chapter 3).

As I received it, Berger’s code was in two files, sdtest.hs and Cool.hs.
The first thing I did was to split the former into logically related chunks. The
current module hierarchy looks like this (arrows indicate dependencies):

Natural

Expo

OO

CoRec

ffMMMMMMMMMMM

Cool Digits

OO

Extract

ffMMMMMMMMMMM

OO

SDTypes

eeJJJJJJJJJJ

OO 88qqqqqqqqqqq

Test

OO

These modules are:

• Natural: Oddly, there is no data type of natural numbers in the standard
library. This provides one. (Previously a type synonym for Integer was
used.)

• Expo: This is a front-end to the Deta.MemoTrie module, with the addition
of a HasTrie instance for Natural .

• CoRec: This contains the classes Fix (type constructors that have a fix-
point), Ind (recursion and strong recursion operators for least fixpoints),
and Coind (corecursion and strong corecursion operators for greatest fix-
points), and instances for them. It also contains wfrec, the recursion
(fixpoint) operator extracted from a proof of the wellfounded induction
principle.

• Digits defines signed digits and their memo tries.

• Extract contains the inductive-coinductive data types extracted from the
predicates Cn, and memo tries for them. These predicates are separate
from the digits because they are in fact independent of the digit system
used. In this module, in the functions compC and timesC scoped type
variables make it possible to put type signatures on their subfunctions;
these signatures are additionally made much clearer with the use of asso-
ciated types instead of functional dependencies.
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• SDTypes exports a type of signed digit streams and functions on them.
Functions are defined in terms of open balls with rational centres and
radii, which are subjected to the function cool (from Cool.hs) to eliminate
excess precision (improving space efficiency). Scoped type variables are
again used to make type signatures possible.

• Test contains a number of example programs. Here I attempted to do
some optimisation by introducing some strictness with bang patterns.

5.2.1 CoRec

In CoRec are defined classes for fixpoints of type operators and induction and
coinduction combinators for them:

class Fix op where
type Fixpoint op
fixin :: op (Fixpoint op)→ Fixpoint op
outfix :: Fixpoint op → op (Fixpoint op)

class (Functor op,Fix op)⇒ Ind op where
it :: (op a → a)→ Fixpoint op → a
rec :: (op (a,Fixpoint op)→ a)→ Fixpoint op → a

class (Functor op,Fix op)⇒ Coind op where
coit :: (a → op a) → a → Fixpoint op
corec :: (a → op (Either a (Fixpoint op)))→ a → Fixpoint op

(Ind and Coind also have implementations of their methods, omitted here.) it
and rec are ‘induction’ and ‘complete induction’, coit and corec ‘corecursion’
and ‘complete coinduction’. There are instances for ((, ) a), and variations on
it (finite and infinite lists), as well as ((→) a), which is used to express pro-
gressiveness of a function. ‘Wellfounded’ induction is defined both in terms
of progressiveness and as just a general recursion operator; the proof of pro-
gressiveness is not actually used in the implementation of recursion, so the two
operators are equivalent if they are used only in programs extracted from cor-
rectness proofs.

Note that in Haskell, there is only one fixpoint for a given operator. It can
serve simultaneously as both the least fixpoint (and have an induction operator),
and the greatest fixpoint (and have a coinduction operator).

5.2.2 Extract

In [Ber09a], the following predicates define coinductively uniformly continuous
functions on In:

K : P(RIn)→ P(RIn)→ P(RIn)

K(X)(Y ) = {f | ∃d(f [In] ⊆ Id ∧X(vad ◦ f)) ∨ ∃i∀dY (f ◦ avi,d)}
Jn : P(RIn)→ P(RIn)

Jn(X) = µY.Kn(X)(Y )

Cn ∈ P(RIn)

Cn = νX.Jn(X)
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Here avd, vad : R→ R are the functions defining the semantics of digits d ∈ D,
for some set of digits D; avi,d applies avd to the ith element of a list. D along
with vad and avd form a digit system. For D = SD := {−1, 0, 1} they are
defined as follows:

vad(x) = 2x− d

avd(x) =
x+ d

2
avi,d(x1, . . . , xn) = 〈x1, . . . , avd(xi), . . . , xn〉

In this way a set of uniformly continuous functions is defined independently of
the digit system used to represent them.

Remember that d :→: b (where d is an instance of the class HasTrie) is the
type of d -indexed memo tries storing values of type b, representing functions
d → b. d is the type of digits, representing a digit system. This translates, via
realisability, directly into Haskell as:

data Jop d e a b = W e a | R (d :→: b)
data J d e a = Jin {outJ :: Jop d e a (J d e a)}
data C d e = Cin {outC :: J d e (C d e)}

(Although e is not used in J and C , it needs to be mentioned to allow for com-
posing functions. Without it, composite types would be ambiguous.) Originally
the relationship between a digit type and the associated type of memo tries was
expressed via functional dependencies, so that the trie types had to be added
as extra parameters to these types:

data Jop d f e g a b = W e a | R (f b) | Dummy (g b)
data J d f e g a = Jin {outJ :: Jop d f e g a (J d f e g a)}
data C d f e g = Cin {outC :: J d f e g (C d f e g)}

The Dummy constructor is necessary to force the correct kind for g (although
another extension, kind signatures, could eliminate the need for it). Expression
with associated types makes it clearer that f and g are not used directly in J
or C .

In SDTypes we set d = SD , where

data SD = N | Z | P deriving (Enum,Read ,Show)
instance HasTrie SD where . . .

so C () SD represents C0, and C SD SD represents C1.
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Chapter 6

Conclusion and further
work

In this thesis I summarised the theory behind real number computation, in-
cluding notions of computability (in terms of Type-2 Turing machines) and how
they relate to both computability on finite data and continuity. I additionally
defined a tentative notion of ‘primitive corecursion’ for functions on infinite data
in terms of type-2 Turing machines, inspired by a similar notion for functions
on finite data. I also explained the relationship between logical propositions
and proofs and the functional programming concepts of type and program, and
the use of modified realisability to find programs that realise propositions about
real numbers. Finally, with the theory in mind, I examined Berger’s Haskell
code, which was extracted by hand using realisability from proofs of proposi-
tions in real analysis, to be clearer, better structured and more clearly reflect the
propositions that it realises. In the process I discovered a connection between
the realisability approach and direct implementations of number functions via
functions on finite approximations of reals.

Real number computation is a deep subject, and this thesis suggests many
further lines of research. On the theoretical level, my definition of ‘primitive
corecursive’ functions bears further investigation. Several questions need to
be asked: Is it non-trivial and interesting? Is there a hierarchy of primitive
corecursive functions, in a similar way to the Grzegorczyk hierarchy of primitive
recursive functions? Are the real number programs we have extracted so far
primitive corecursive? And given the machine-oriented nature of the definition,
is there a more natural characterisation of primitive corecursive functions at the
proof level? If so, is it the one given by Leivant and Ramyaa [LR]?

The code could stand to be improved in numerous ways. Firstly, the pro-
grams are very slow, and use a lot of memory. It remains to be seen what
techniques can be applied to real number programs to reduce the amount of
memory allocation they do, not just to improve space complexity (such as in-
troducing optimal strictness to remove any space leaks caused by excess lazi-
ness) but also to remove unnecessary overheads (such as using deforestation to
eliminate redundant allocations).

Second, the specific technique of memoization used is inefficient. It leaves
partially evaluated but potentially very large data structures sitting around
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in memory for as long as they are needed; in many cases it is preferable to
deallocate them to be re-evaluated later, or write them to temporary storage to
free up physical memory. The very generic framework could also be specialised.
For continuous functions f , for any input x that extends a given finite prefix w,
the result f(x) always extends the finite approximation f̃(w); this fact could be
harnessed by using a data structure that stores finite versions of intermediate
results at given prefixes, instead of duplicating this data many times in streams
that are identical in their first n elements. This may involve a ‘little-endian’
representation of finite portions of the streams, rather than the direct ‘big-
endian’ representation of whole streams that is currently used.

Third, since the trie types have been removed as parameters to the type
constructor C, the latter has the appropriate kind to be given an instance of
the Category class, and composition is defined (as the function compC), so it
should be possible to define an instance of Category (and possibly its subclass
Arrow), which would allow it to be used in certain generic programs. This is
made difficult by the HasTrie constraint on compC — Haskell does not allow
extra class constraints on class methods — but it is possible in theory.

Finally, the ultimate goal of the project in the long term should be to pro-
duce a usable library for real number computation. This involves designing a
programming interface and packaging the code in a standard package format
(e.g. using Cabal [Cab]).

Programs currently have to be extracted via the realisability process by
hand. Another intriguing option would be to write proofs in an automatic
proof checker, and extract the programs automatically. For example, Coq [Coq]
allows theorems to be defined using a dependently typed programming language
including a type of non-computational propositions, and provides a mechanism
for extraction of programs in various languages (including Haskell) from proofs,
justified by the realisability interpretation.
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Appendix A

Code

This is a modified version of code originally written by Ulrich Berger.

A.0.3 Natural.hs

module Natural

( Natural

, mkNatural

) where

newtype Natural = Natural { fromNatural :: Integer }

deriving (Eq, Ord)

badNat = error "negative natural"

mkNatural :: Integer -> Natural

mkNatural n | n < 0 = badNat

| otherwise = Natural n

instance Show Natural where

show (Natural n) = show n -- makes sense thanks to Num instance

-- Unfortunately Num only allows for signed numbers - some of its methods don’t

-- make sense for naturals.

instance Num Natural where

Natural x + Natural y = Natural (x + y)

Natural x * Natural y = Natural (x * y)

Natural x - Natural y

= if y >= x then Natural 0 else Natural (x - y) -- checked subtraction

negate _ = error "Num is annoying"

abs _ = error "Num is annoying"

signum _ = error "Num is annoying"

fromInteger x

| x >= 0 = Natural x

| otherwise = error "Num is annoying"

instance Real Natural where

toRational (Natural x) | x < 0 = badNat
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| otherwise = toRational x

instance Enum Natural where

succ (Natural n) | n < 0 = badNat

| otherwise = Natural (succ n)

pred (Natural n) | n < 0 = badNat

| n == 0 = error "bad argument"

| otherwise = Natural (pred n)

toEnum n | n < 0 = badNat

| otherwise = Natural (fromIntegral n)

fromEnum (Natural n) = fromInteger n

instance Integral Natural where

Natural x ‘quotRem‘ Natural y

| x < 0 || y < 0 = badNat

| otherwise = (Natural q, Natural r) where (q,r) = x ‘quotRem‘ y

Natural x ‘divMod‘ Natural y

| x < 0 || y < 0 = badNat

| otherwise = (Natural d, Natural m) where (d,m) = x ‘quotRem‘ y

toInteger (Natural x) = x

A.0.4 Expo.hs

{-# LANGUAGE TypeFamilies #-}

module Expo

( module Data.MemoTrie

, module Natural

) where

import Data.MemoTrie

import Natural

import Data.List (genericIndex)

instance HasTrie Natural where

data Natural :->: a = NaturalTrie [a]

trie f = NaturalTrie (map f [0..])

untrie (NaturalTrie l) n = l ‘genericIndex‘ n

-- I don’t see how this is useful, but it shuts up warnings

enumerate (NaturalTrie xs) = zip [0..] xs

A.0.5 CoRec.hs

{-# LANGUAGE GeneralizedNewtypeDeriving, TypeFamilies #-}

module CoRec

( Fix (..)

, Ind (..)

, Coind (..)

, Cart (..)

, Cart1 (..)

, wfrec, wfrecIt
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, Count

-- examples - comment in for testing

--, fibs, qsort, qsortIt

) where

import Control.Arrow ((&&&), (|||))

import Natural

-- General monotone (co)(iteration/recursion):

class Fix op where

type Fixpoint op -- there is generally only one in Haskell,

-- but not in the underlying theory

fixin :: op (Fixpoint op) -> Fixpoint op

outfix :: Fixpoint op -> op (Fixpoint op)

class (Functor op, Fix op) => Ind op where

it :: (op a -> a) -> Fixpoint op -> a

it step = step . fmap (it step) . outfix

rec :: (op (a, Fixpoint op) -> a) -> Fixpoint op -> a

rec step = step . fmap (rec step &&& id) . outfix

class (Functor op, Fix op) => Coind op where

coit :: (a -> op a) -> a -> Fixpoint op

coit step = fixin . fmap (coit step) . step

corec :: (a -> op (Either a (Fixpoint op))) -> a -> Fixpoint op

corec step = fixin . fmap (corec step ||| id) . step

-- Example: infinite lists

instance Fix ((,) a) where

type Fixpoint ((,) a) = [a]

fixin (x,xs) = x:xs

outfix (x:xs) = (x,xs)

instance Coind ((,) a)

fibs :: [Natural]

fibs = coit costep (1,1) where

costep :: (Natural,Natural) -> (Natural , (Natural,Natural))

costep (n,m) = (n, (m,n+m))

{-

Main> take 15 fibs

[1,1,2,3,5,8,13,21,34,55,89,144,233,377,610]

-}

newtype Cart a b = CartIn {outCart :: (a,b)}

deriving (Functor)
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instance Fix (Cart a) where

type Fixpoint (Cart a) = [a]

fixin (CartIn (x,xs)) = x:xs

outfix (x:xs) = CartIn (x,xs)

instance Coind (Cart a)

{-

fibs :: [Nat]

fibs = coit costep (1,1) where

costep :: (Nat,Nat) -> Cart Nat (Nat,Nat)

costep (n,m) = CartIn (n,(m,n+m))

-}

-- Example: finite and infinite lists

data Cart1 a b = NC | CC a b

instance Functor (Cart1 a) where

fmap f NC = NC

fmap f (CC x y) = CC x (f y)

instance Fix (Cart1 a) where

type Fixpoint (Cart1 a) = [a]

fixin NC = []

fixin (CC x xs) = x:xs

outfix [] = NC

outfix (x:xs) = (CC x xs)

instance Ind (Cart1 a) -- finite list

instance Coind (Cart1 a) -- finite and infinite lists

sumList :: [Int] -> Int

sumList = it step where

step :: Cart1 Int Int -> Int

step NC = 0

step (CC h p) = h + p

{-

Main> sumList [1,2,3,4,5,6,7,8,9,10]
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-}

-- Wellfounded recursion

wfrec :: (a -> (a -> b) -> b) -> a -> b

-- (forall n. (forall m < n. A(m)) -> A(n)) -> forall n. A(n)

wfrec prog = h where h x = prog x h

-- Note that this is plain (general) recursion!
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-- Only to be used if prog is extracted from the

-- proof of progressiveness of a pedicate w.r.t.

-- a wellfounded relation!

-- wfrec is obtained by optimising the following program

-- wfrecIT extracted from the inductive proof of

-- wellfounded induction:

data Count a = CountIn {outCount :: (a -> Count a)}

instance Fix ((->) a) where

type Fixpoint ((->) a) = Count a

fixin = CountIn

outfix = outCount

instance Ind ((->) a)

wfrecIt :: (a -> Count a) -> (a -> (a -> b) -> b) -> a -> b

wfrecIt wfproof prog x = it step (wfproof x) x where

-- step :: (a -> a -> b) -> a -> b

step w p = prog p (\q -> w q q)

-- The optimisation is possible because the first

-- argument, wfproof, of wfrecIt isn’t actually used.

-- It just serves as a witness for termination.

-- Since we know termination from outside

-- (because the relation we recur on is wellfounded)

-- it can be omitted.

-- Example: Quicksort

-- (wellfounded induction on the length of finite lists)

qProg :: Ord a => [a] -> ([a] -> [a]) -> [a]

qProg xs ih = case xs of

[] -> []

(x:ys) -> let low = [y | y <- ys, y <= x]

high = [y | y <- ys, y > x]

in ih low ++ [x] ++ ih high

qsort :: Ord a => [a] -> [a]

qsort = wfrec qProg

qsortIt :: Ord a => [a] -> [a]

qsortIt = wfrecIt (\_ -> error "Efq error") qProg

A.0.6 Digits.hs

{-# LANGUAGE TypeFamilies #-}

module Digits
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( SD (..)

, fromSD, signumSD

, av, va

, module Data.MemoTrie

) where

import Expo

import Data.MemoTrie -- already from Expo, but needs to be explicit

-- Signed digits

data SD = N | Z | P deriving (Enum, Read, Show)

instance HasTrie SD where

data SD :->: a = TripleIn { outTriple :: (a,a,a) }

trie g = TripleIn (g N, g Z, g P)

untrie (TripleIn (x,y,z)) = \d -> case d of

N -> x

Z -> y

P -> z

-- I don’t see how this is useful, but it shuts up warnings

enumerate (TripleIn (n,z,p)) = [(N,n),(Z,z),(P,p)]

-- Without memoizations it’s dramatically slower:

{-

newtype Triple a = TripleIn {outTriple :: SD -> a}

instance Fun SD Triple where

abst = TripleIn

appl = outTriple

-}

signumSD :: (Num a, Ord a) => a -> a -> SD

signumSD eps x | x < -eps = N

| x > eps = P

| otherwise = Z

fromSD :: Num a => SD -> a

fromSD N = -1

fromSD Z = 0

fromSD P = 1

toSD :: (Num a,Ord a) => a -> SD

toSD = signumSD 0

-- The interpretation of signed digits

av :: SD -> Rational -> Rational

av d p = (fromSD d + p)/2
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va :: SD -> Rational -> Rational

va d p = 2*p - fromSD d

A.0.7 Extract.hs

{-# LANGUAGE TypeFamilies, TypeOperators, ScopedTypeVariables #-}

module Extract

( Jop (..)

, C (..)

, J (..)

, compC

, compCH

, idC

, module CoRec

) where

import CoRec

import Expo

-- Extracted programs

-- Inductive and coinductive data types

data Jop d e a b = W e a | R (d :->: b)

-- Inductive

data J d e a = Jin { outJ :: Jop d e a (J d e a) }

-- Coinductive

data C d e = Cin { outC :: J d e (C d e) }

-- Iteration and recursion for J

instance HasTrie d => Functor (Jop d e a) where

fmap _ (W e c) = W e c

fmap g (R as) = R (fmap g as)

instance HasTrie d => Fix (Jop d e a) where

type Fixpoint (Jop d e a) = J d e a

fixin = Jin

outfix = outJ

instance HasTrie d => Ind (Jop d e a)

-- Coiteration and corecursion for C
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instance HasTrie d => Functor (J d e) where

fmap f =

let mapJopW g (W e a) = W e (g a)

mapJopW _ (R cs) = R cs

myfixin = fixin

in it (myfixin . mapJopW f)

instance HasTrie d => Fix (J d e) where

type Fixpoint (J d e) = C d e

fixin = Cin

outfix = outC

instance HasTrie d => Coind (J d e)

-- Lemma 16 a (identity)

idC :: HasTrie d => C d d

idC = coit (\_ -> fixin (R (trie (\d -> fixin (W d ()))))) ()

-- Lemma 16 b (digits)

-- dC :: HasTrie d => d -> C d d

-- dC = corec (\d -> fixin (W d (Right idC)))

dC :: HasTrie d => d -> C d d

dC d = fixin (fixin (W d idC))

-- Lemma 18 (composition) (compare with Hancock/Pattinson/Ghani)

compC :: forall d1 d2 d3. (HasTrie d1, HasTrie d2) =>

C d2 d3 -> C d1 d2 -> C d1 d3

compC c23 c12 = coit costep (c12, c23) where

-- Type abreviations: Cij := C di fi dj fj

-- Jij a := J di fi dj fj a

-- Jopij a b := Jop di fi dj fj a b

-- costep :: (C12, C23) -> J13 (C12, C23)

costep :: (C d1 d2, C d2 d3)

-> J d1 d3 (C d1 d2, C d2 d3)

costep (c12, c23) = aux (outC c23) c12

-- aux :: J23 C23 -> C12 -> J13 (C12, C23)

aux :: J d2 d3 (C d2 d3) -> C d1 d2

-> J d1 d3 (C d1 d2, C d2 d3)

aux = it step
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-- step :: Jop 23 C23 (C12 -> J13 (C12, C23)) -> C12 -> J13 (C12, C23)

step :: Jop d2 d3 (C d2 d3)

(C d1 d2

-> J d1 d3 (C d1 d2, C d2 d3))

-> C d1 d2 -> J d1 d3 (C d1 d2, C d2 d3)

step (W d3 c23) c12 = fixin (W d3 (c12, c23))

step (R fs) c12 = subaux (outfix c12) where

-- subaux :: J12 C12 -> J13 (C12, C23)

subaux :: J d1 d2 (C d1 d2)

-> J d1 d3 (C d1 d2, C d2 d3)

subaux = it substep

-- substep :: Jop12 C12 (J13 (C12, C23)) -> J13 (C12, C23)

substep :: Jop d1 d2 (C d1 d2)

(J d1 d3 (C d1 d2, C d2 d3))

-> J d1 d3 (C d1 d2, C d2 d3)

substep (W d2 c12) = untrie fs d2 c12

substep (R j1223s) = fixin (R j1223s)

compCH :: (HasTrie d1, HasTrie d2) => -- honest version

C d2 d3 -> C d1 d2 -> C d1 d3

compCH c23 c12 = coit costep (c12, c23) where

costep (c12, c23) = aux (outC c23) c12

aux = it step

step (W d3 c23) c12 = fixin (W d3 (c12, c23))

step (R fs) c12 = fixin (R (trie (\_ -> subaux (outfix c12)))) where

subaux = it substep

substep (W d2 c12) = untrie fs d2 c12

substep (R j1223s) = fixin (R j1223s)

-- Lemma 19 a (terminal object)

oneC :: (HasTrie d) => C d ()

oneC = coit (fixin . W ()) ()

-- Lemma 19 b i (projections)

pr1C :: (HasTrie d, HasTrie e) => C (d, e) d

pr1C = coit (\_ ->

fixin (R (trie (\de -> fixin (W (fst de) ())))))

()

pr2C :: (HasTrie d, HasTrie e) => C (d, e) e

pr2C = coit (\_ ->

fixin (R (trie (\de -> fixin (W (snd de) ())))))

()
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-- Lemma 19 b ii (pairing)

timesC :: forall d1 d2 e. (HasTrie d1, HasTrie d2, HasTrie e) =>

C e d1 -> C e d2 -> C e (d1, d2)

timesC = curry (coit costep) where

-- Type abreviations: Ci := C e g di fi

-- Jopi a b := Jop e g di fi a b

-- J12 a := J e g (d1, d2) (CompF f1 f2) a

-- costep :: (C1, C2) -> J12 (C1, C2)

costep :: (C e d1, C e d2)

-> J e (d1, d2) (C e d1, C e d2)

costep (c1, c2) = it step (outfix c1) c2

-- step :: Jop1 C1 (C2 -> J12 (C1, C2)) -> C2 -> J12 (C1, C2)

step :: Jop e d1 (C e d1)

(C e d2

-> J e (d1, d2) (C e d1, C e d2))

-> C e d2

-> J e (d1, d2) (C e d1, C e d2)

step (W d1 c1) c2 = it substepW (outfix c2) d1 c1

step (R h) c2 = it substepR (outfix c2) h

-- substepW :: Jop2 C2 (d1 -> C1 -> J12 (C1, C2)) -> d1 -> C1 -> J12 (C1, C2)

substepW :: Jop e d2 (C e d2)

(d1

-> C e d1

-> J e (d1, d2) (C e d1, C e d2))

-> d1

-> C e d1

-> J e (d1, d2) (C e d1, C e d2)

substepW jop d1 c1 =

fixin (case jop of

W d2 c2 -> W (d1, d2) (c1, c2)

R f1s -> R (trie (\e -> untrie f1s e d1 (compC c1 (dC e)))))

-- substepR :: Jop2 C2 ((e :->: (C2 -> J12 (C1, C2))) -> J12 (C1, C2))

-- -> (e :->: (C2 -> J12 (C1, C2))) -> J12 (C1, C2)

substepR :: Jop e d2 (C e d2)

(e :->: (C e d2 -> J e (d1, d2) (C e d1, C e d2))

-> J e (d1, d2) (C e d1, C e d2))

-> (e :->: (C e d2 -> J e (d1, d2) (C e d1, C e d2)))

-> J e (d1, d2) (C e d1, C e d2)

substepR jop h =

fixin (R (trie (\e ->

case jop of

W d2 c2 -> untrie h e (dC d2 ‘compC‘ c2 ‘compC‘ dC e)
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R fes -> untrie fes e h)))

A.0.8 SDTypes.hs

{-# LANGUAGE

ScopedTypeVariables

, TypeOperators

, MultiParamTypeClasses

, TypeSynonymInstances

#-}

module SDTypes

( CSD

, II

, UCII

, C0

, UC

, qC

, iterC

, cRatM

, uCtoCSD

, ucSDS

, defaultPrecision

, wfC

, piecewisemonotoneUC

, uClasstoC

, compUC

, idUC

, cool

, module Digits

, module Extract

) where

import Cool

import Digits

import Extract

-- This should be imported via Extract, but mysteriously isn’t.

import Natural

-- pi4M 25

-- fromRational (defint (lmaC 2) 0.01)

-- fromRational (defint (lmaC 1.5) 0.01)

-- fromRational (defint (lmaC 1) 0.01)

-- fromRational (defint (lmaC 0.1) 0.0005)
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-- Some hacks and verbose code are forced

-- by Hakell’s inadequate type inference.

-- I would prefer a programming language

-- where, if desired, type inferenc can be switched

-- off and replaced by eplicit typing (in F omega).

-- Programs extracted from

-- "From coinductive proofs to exact real arithmetic"

-- Section: Digit Systems

-- C_D

type C0 d = C () d

type J0 d a = J () d a

type Jop0 d a b = Jop () d a b

-- Default number of digits to use

defaultPrecision :: Int

defaultPrecision = 60

instance Show d => Show (C0 d) where

show = take defaultPrecision . concat . (showC0’ "-") -- "-" means "wait"

showC0’ :: forall d. Show d => String -> C0 d -> [String]

showC0’ waitstring = coit costep where

costep :: C0 d -> (String, C0 d)

costep = it step . outfix

step :: Jop0 d (C0 d) (String, C0 d) -> (String, C0 d)

step (W d c) = (show d, c)

step (R h) = let (str, c) = (untrie h ())

in (waitstring ++ str, c)

{-

-- costep :: C0 d -> Cart String (C0 d)

costep = it step . outfix

-- step :: Jop0 (C0 d) (Cart String (C0 d)) -> Cart String (C0 d)

step (W d c) = CartIn (show d, c)

step (R h) = let (str, c) = outCart (untrie h ())

in CartIn (waitstring ++ str, c)

-}

-- Lemma 20
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{-

(X, D) is a digit system.

C_D [i.e. C0 d] is the largest subset A of X such that

if x in A, then

there exist x in D and x’ in A

such that x = d(x’)

i.e. C_D is "closed under the inverses of the digits D".

-}

toDigitStream :: C0 d -> [d]

toDigitStream = coit costep where

-- costep :: C0 d -> (d, C0 d)

costep = it step . outfix

-- step :: Jop0 (C0 d) (Cart d, C0 d) -> (Cart d, C0 d)

step (W d c) = (d, c)

step (R h) = untrie h ()

fromDigitStream :: forall d. [d] -> C0 d

fromDigitStream = coit costep where

costep :: [d] -> J0 d [d]

costep ds = fixin (W (head ds) (tail ds))

runC :: (HasTrie d, HasTrie e) => C d e -> [d] -> C0 e

runC c = compC c . fromDigitStream

runCH :: (HasTrie d, HasTrie e) => C d e -> [d] -> C0 e

runCH c = compCH c . fromDigitStream

runCS :: (HasTrie d, HasTrie e) => C d e -> [d] -> [e]

runCS c = toDigitStream . compC c . fromDigitStream

-- Lemma 25

wfC :: forall d e a. (HasTrie d, HasTrie e) =>

(a -> Either (e, a) (d :->: a)) ->

a -> C d e

wfC s = coit (wfrec prog) where

prog :: a -> (a -> J d e a) -> J d e a

prog x ih =

case s x of

Left (e, y) -> fixin (W e y)

Right ys -> fixin (R (fmap ih ys))

-- Continuous functions w.r.t. signed digit reals

type CSD = C SD SD
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type JSD a = J SD SD a -- unused

type JopSD a b = Jop SD SD a b

sRealM :: Natural -> [SD] -> Float

sRealM m = aux m where

aux 0 _ = 0

aux (n+1) (d:ds) = (fromSD d + aux n ds)/2

sRatM :: Int -> [SD] -> Rational

sRatM m ds = foldr (.) id (map av (take m ds)) 0

sReal = sRealM 12

cRealM :: Natural -> C0 SD -> Float

cRealM m = sRealM m . toDigitStream

cRatM :: Int -> C0 SD -> Rational

cRatM m = sRatM m . toDigitStream

cReal = cRealM 12

-- Iterating a map

iterC :: HasTrie d => C d d -> Int -> C d d

iterC c n = iterate (compC c) idC !! n

iterCR :: HasTrie d => C d d -> Int -> C d d

iterCR c n = iterate (c ‘compC‘) idC !! n

powiterC :: HasTrie d => C d d -> Int -> C d d

powiterC c n = iterate (\c -> compC c c) c !! n

-- cReal (runC (iterC lmC 3) (period [N, Z]))

-------------------------

-- Metric digit spaces

-- Uniform continuity

-- f m-cont. :<=> all delta, p ex eps in m(delta), q:

-- f[B_delta(p)]\tm B_eps(q)

-- f u.c. :<=> f m-cont. for some modulus m

-- m modulus :<=>

-- all b>0 ex a>0 all delta<=a all eps in m(delta) eps<=b
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type Ball p = (Rational, p)

type UC p q = Ball p -> Ball q

-- Bounded metric spaces

class BMS p where

bMS :: (Rational, p)

-- if bMS = (delta0, p0) then all x sigma(p0, x)<=delta0

-- Uniformly contracting metric digit spaces

class UContrMDS p d where

ucontrMDS :: d -> UC p p

-- There must exist lambda < 1 such that

-- for every d the lambda-contractivity of d

-- is witnessed by ucontrMDS d

-- Uniformly covering metric digit spaces

class UCovMDS p d where

ucovMDS :: Ball p -> Maybe d

-- there must exist a0>0 s.t.

-- all (delta, p): if ucovMDS(delta, p) = Just d then B_delta(p) subseteq d[X];

-- if ucovMDS(delta, p) = Nothing then delta > a0

-- Uniformly invertible metric digit spaces

class UInvMDS p d where

uinvMDS :: d -> UC p p

-- if uinvMDS delta0 p0 d p = (q, h) then

-- all eps F_{h eps, eps}(d^{-1})

type II = Rational -- = [-1, 1] intersect Rational

leftBall, rightBall :: Ball II -> II

leftBall (delta, p) = max (-1) (p - delta)

rightBall (delta, p) = min 1 (p + delta)

inBall :: Ball II -> II -> Bool

inBall ball q = leftBall ball <= q && q <= rightBall ball

truncateBall :: Ball II -> Ball II

truncateBall ball = (eps, q) where

left = leftBall ball

right = rightBall ball

eps = (right-left)/2

q = (right+left)/2

-- subBall :: Ball II -> Ball II -> Bool

-- subBall (delta, p) (epsilon, q) = abs (p-q) + delta <= epsilon
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subBall :: Ball II -> Ball II -> Bool

subBall ball1 ball2 = leftBall ball2 <= leftBall ball1 &&

rightBall ball1 <= rightBall ball2

ballSD :: SD -> Ball II

ballSD d = truncateBall (1/2, fromSD d)

-- the smallest ball containing a given list of points

hullBall :: [II] -> Ball II

hullBall ps = ((right-left)/2, (right+left)/2)

where

left = max (-1) (minimum (1 : ps))

right = min 1 (maximum ((-1) : ps))

instance BMS II where

bMS = (1, 0)

type UCII = UC II II

sdUC :: SD -> UCII

sdUC d (delta, p) = truncateBall (delta/2, av d p)

instance UContrMDS II SD where

ucontrMDS = sdUC

-- all 1/2 contracting

instance UCovMDS II SD where

ucovMDS ball =

case [ d | d <- [Z, P, N], subBall ball (ballSD d)] of

(d:_) -> Just d

_ -> Nothing

-- a0 = 1/4

instance UInvMDS II SD where

uinvMDS d (delta, p) = truncateBall (2*delta, va d p)

-- Effective uniform continuity for u.c. piecewise monotone functions

piecewisemonotoneUC :: (II -> II) -> [II] -> UCII

piecewisemonotoneUC f peaks ball = hullBall (map f potentialExtrema)

where

potentialExtrema = filter (inBall ball) peaks

++ [leftBall ball, rightBall ball]

-- Lemma 29

compUC :: Cool r => UC q r -> UC p q -> UC p r

compUC f g b = cool 3 (f (g b))
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-- Lemma 31 (a)

{-

uCtoC :: (HasTrie d, BMS p, UContrMDS p d,

HasTrie e, UInvMDS q e, UCovMDS q e)

=> UC p q -> C d e

uCtoC = wfC s where

s uc = case ucovMDS (uc bMS) of

Just e -> Left (e, compUC (uinvMDS e) uc)

Nothing -> Right (trie (compUC uc . ucontrMDS))

-}

-- For family U of u.c. functions f closed under f . d and e^{-1} . f

uClasstoC :: (HasTrie d, BMS p, HasTrie e, UCovMDS q e) =>

(u -> UC p q) ->

(u -> d -> u) ->

(u -> e -> u) ->

u -> C d e

uClasstoC uc r w = wfC s where

s u = case ucovMDS (uc u bMS) of

Just e -> Left (e, w u e)

Nothing -> Right (trie (r u))

-- old as instance of new

uCtoC :: (HasTrie d, BMS p, UContrMDS p d,

HasTrie e, UInvMDS q e, UCovMDS q e,

Cool q)

=> UC p q -> C d e

uCtoC = uClasstoC id r w where

r u d = compUC u (ucontrMDS d)

w u e = compUC (uinvMDS e) u

qC :: Rational -> C0 SD

qC = coit costep where

costep :: II -> J0 SD II

costep q = let e = signumSD (1/4) q

in fixin (W e (va e q))

uCtoCSD :: UCII -> CSD

uCtoCSD = uCtoC

runUC :: UCII -> [SD] -> C0 SD

runUC = runC . uCtoCSD

runUCS :: UCII -> [SD] -> [SD]

runUCS = runCS . uCtoCSD
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avUC :: SD -> UCII

avUC d (delta, p) = truncateBall (delta/2, av d p)

-- Corollary 33

-- This doesn’t type check for the usual

-- silly reasons (p does not occur after =>)

{-

changeDigits :: (BMS p, HasTrie d, HasTrie e,

UContrMDS p d, UInvMDS p e, UCovMDS p e)

=> C0 d -> C0 e

changeDigits = compC (uCtoC (\eps -> (eps, id)))

-}

-- Version with p = II doesn’t work either:

{-

cDII :: (HasTrie d, HasTrie e,

UContrMDS II d, UInvMDS II e, UCovMDS II e)

=> C0 d -> C0 e

cDII = compC (uCtoC (\eps -> (eps, id)))

-}

-- So, need to resign to monomorphism:

type PiDigits = Natural

piDig :: PiDigits -> II -> II

piDig n p = (1/2) + (np*p)/(2*np+1) where

np = fromIntegral n

instance UContrMDS II PiDigits where

ucontrMDS n = piecewisemonotoneUC (piDig n) []

uCtoCpi = uCtoC :: UC II II -> C PiDigits SD

idUC :: UCII

idUC = id

cDpi4 :: C0 PiDigits -> C0 SD

cDpi4 = compC (uCtoCpi idUC)

pi4C0SD :: C0 SD

pi4C0SD = cDpi4 (fromDigitStream [1, 2..])
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pi4M :: Natural -> Float

pi4M m = cRealM m pi4C0SD

-- pi4M 25

pi4S ::[SD]

pi4S = toDigitStream pi4C0SD

-- take 35 pi4S

-- Definite integral (Proposition 10)

defint :: CSD -> Rational -> Rational

defint c eps = wfrec prog eps c where

prog :: Rational -> (Rational -> CSD -> Rational) -> CSD -> Rational

prog eps ih = if eps >= 2

then \_-> 0

else let step :: JopSD CSD Rational -> Rational

step (W e c) = ih (2*eps) c / 2 + fromSD e

step (R ps) = (untrie ps N + untrie ps P)/2

in it step . outfix

-- Continuity of identity:

ucId :: UC II II

ucId = id

ucSDS :: [SD] -> UC II II

ucSDS = foldr compUC ucId . map sdUC

A.0.9 Cool.hs

-- 20-10-08

-- Cooling down rational numbers (avoiding useless precision)

{-# LANGUAGE TypeSynonymInstances #-}

module Cool (Cool (..)) where

-- Given rationals delta,p, where delta>0, define the ball

-- B(delta,p) := {x in QQ : |x - p| <= delta}

-- For every nonnegative integer k we map

-- (delta,p) to cool k (delta,p) = (delta’,p’)

-- such that

-- (1) B(delta,p) subset B(delta’,p’)

-- (2) bitsize (delta’,p’) <= k + 2 * lg (1/delta)
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-- (3) delta’ <= (1 + 2^(-k))*delta

-- where lg x = least integer n such that |x| <= 2^n

lg :: (RealFrac a, Integral b) => a -> b

lg x = (fromIntegral .

length .

takeWhile (\n -> fromIntegral (2^n) < abs x))

[0,1..]

-- ceil q = least integer >= q cast into the rationals

ceil :: RealFrac a => a -> a

ceil q = fromInteger (ceiling q)

class Cool p where

cool :: Integral a => a -> (Rational, p) -> (Rational, p)

instance Cool Rational where

cool k (delta,q) = (ceil m / n , p / n)

where n = fromIntegral (2^(k + (lg (1/delta))))

p = fromIntegral (round (n * q))

m = maximum [abs (p - n * (q + d)) | d <- [-delta,delta]]

test :: Integer -> (Rational,Rational) -> IO ()

test k (delta,q) =

let (delta’,q’) = cool k(delta,q)

(deltaF,qF) = (fromRational delta,fromRational q)

(deltaF’,qF’) = (fromRational delta’,fromRational q’)

in do putStrLn (-- show (delta,q) ++ " " ++

show (deltaF,qF) ++ " " ++

show (qF-deltaF,qF+deltaF))

putStrLn (show (delta’,q’) ++ " " ++

show (deltaF’,qF’) ++ " " ++

show (qF’-deltaF’,qF’+deltaF’))

putStrLn (show deltaF’ ++ " " ++

show ((1 + 2^^(- fromIntegral k)) * deltaF))

A.0.10 Test.hs

{-# LANGUAGE TypeOperators, BangPatterns #-}

module Test where

-- 17-9-08

import System.Environment (getArgs, withArgs)

import System.IO (stdout, BufferMode (..), hSetBuffering)

import SDTypes

import UntilM

-- Example: linear affine maps f_(u, v)(x) = u*x+v
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type Rat2 = (Rational, Rational)

linC :: Rat2 -> CSD

linC = wfC s where

s :: Rat2 -> Either (SD, Rat2) (SD :->: Rat2)

s (u, v) = if u <= 1/4

then let w = if abs v <= 1/4 then 0 else signum v

e = signumSD 0 w

in Left (e, (2*u, 2*v-w))

else Right (trie (\d -> (u/2, u*fromSD d/2+v)))

-- runC (linC (1/15, 1/3)) (period [P, Z])

-- Example: quadratic maps f_(u, v, w)(x) = u*x^2+v*x+w

type Rat3 = (Rational, Rational, Rational)

quadC :: Rat3 -> CSD

quadC = wfC s where

s :: Rat3 -> Either (SD, Rat3) (SD :->: Rat3)

s !uvw = case (filter (quadTest uvw) [N, Z, P]) of

(e:_) -> Left (e, quadWrite uvw e)

[] -> Right (trie (quadRead uvw))

quadWrite :: Rat3 -> SD -> Rat3

quadWrite (u, v, w) e = (2*u, 2*v, 2*w - e’)

where e’ = fromSD e

quadRead :: Rat3 -> SD -> Rat3

quadRead (u, v, w) d = (u/4, (u*d’+v)/2, u*d’^2/4 + v*d’/2 + w)

where d’ = fromSD d

quadTest :: Rat3 -> SD -> Bool

quadTest (u, v, w) e = (e’-1)/2 <= low && high <= (e’+1)/2

where

e’ = fromSD e

low = minimum criticals -- max (f_(u, v, w) I)

high = maximum criticals -- min (f_(u, v, w) I)

criticals = [ u+v+w -- f_(u, v, w) 1

, u-v+w -- f_(u, v, w) (-1)

] ++

if u == 0

then []

else let x = -v/(2*u) -- extremal point

in if -1 <= x && x <= 1

then [ u*x^2 + v*x + w ] -- f_(u, v, w) x
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else []

-- Some logistic maps

lma :: (Num a) => a -> a -> a

lma a x = a*(1-x^2)-1 -- 0 <= a <= 2

-- = -a*x^2 + a - 1

lmaC :: Rational -> CSD

lmaC a = quadC (-a, 0, a-1)

-- new: unfortunately much slower

-- lmaC :: Rational -> CSD

-- lmaC a = quC (-a, 0, a-1)

lm12C, lm23C, lm34C, lm2C :: CSD

lm12C = lmaC (1/2)

lm23C = lmaC (2/3)

lm34C = lmaC (3/4)

lm2C = lmaC 2

lman :: Int -> (II -> II)

lman n = (iterate (. lma 2) id) !! n

-- Ball examples

-- Example: quadratic functions, absolute value

quUC :: Rat3 -> UCII

quUC (u, v, w) = piecewisemonotoneUC (\p -> u*p^2+v*p+w)

(if u == 0 then [] else [-v/(2*u)])

ucabs :: UC II II

ucabs = piecewisemonotoneUC abs [0]

-- Example: quadratic functions:

quC :: Rat3 -> CSD

-- quC = uCtoC . quUC

quC = uClasstoC quUC quadRead quadWrite

where

quadRead :: Rat3 -> SD -> Rat3

quadRead (u, v, w) d = (u/4, (u*d’+v)/2, u*d’^2/4 + v*d’/2 + w)

where d’ = fromSD d

quadWrite :: Rat3 -> SD -> Rat3
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quadWrite (u, v, w) e = (2*u, 2*v, 2*w - e’)

where e’ = fromSD e

lmanUC :: Int -> UCII

lmanUC n = (iterate (compUC (quUC (-2, 0, 1))) idUC) !! n

lmacoolnUC :: Int -> Int -> UCII

lmacoolnUC k n = (iterate (compUC (quUC (-2, 0, 1) . cool k)) idUC) !! n

-- NB: to test in ghci, use ’withArgs’.

main :: IO ()

main = titCnoninteractive lm2C (lma 2) (1/3) . map read =<< getArgs

-- Demo programs:

-- If fC is a tree representation of f:II->II

-- then testitC fC f = f^n p where p and n are

-- given interactively.

testitC :: CSD -> (II -> II) -> IO ()

testitC fC f =

let getInput = do

putStr "\nINPUT:"

s <- getLine ‘catch‘ const (return "")

return $ if null s

then Nothing

else Just (read s :: II)

in preUntilM__ getInput $ titC fC f

-- If fC is a tree representation of f:II->II

-- and p is in II (a rational number)

-- then titC fC f p = f^n p where n is given:

-- ... from a list.

titCnoninteractive :: CSD -> (II -> II) -> II -> [Int] -> IO ()

titCnoninteractive fC f p ns =

let c0 = qC p

in do titCpreamble c0 p

mapM_ (\n -> putStrLn ("ITERATIONS: " ++ show n) >> titCstep c0 fC f p n) ns

-- ... interactively.

titC :: CSD -> (II -> II) -> Rational -> IO ()

titC fC f p =

do titCpreamble c0 p

preUntilM__ getInput $ titCstep c0 fC f p

where

c0 = qC p

getInput = do putStr "ITERATIONS: "
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strn <- getLine ‘catch‘ const (putStrLn "" >> return "")

if null strn

then return Nothing

else return (Just (read strn :: Int))

titCpreamble :: C0 SD -> II -> IO ()

titCpreamble c0 p = putStrLn $ concat

[ show p, "\t = ", show c0

, "\n\t = ", show (fromRational p :: Double), "\n"]

titCstep :: C0 SD -> CSD -> (II -> II) -> II -> Int -> IO ()

titCstep c0 fC f p n =

let cn = compC (iterC fC n) c0

pn = iterate f p !! n

fR = fromRational . f . toRational :: Double -> Double

x0 = (fromRational p :: Double)

in putStrLn $ concat

["OUTPUT"

,"\nExact SD: \t", show cn

,"\n... as Float:\t", show (fromRational

(cRatM defaultPrecision cn) :: Double)

,"\nFloat: \t", show (iterate fR x0 !! n)

,if n <= 0

then concat ["\nE. R. as Float:\t",

show (fromRational pn :: Double)

,"\nExact Rat: \t",

show pn, "\n"]

else "\n"]

-- I hate programming

{-

(Float = double precision)

*Main> titC lm2C (lma 2) (1/3)

1%3 = PNPNPNPNPNPNPNPNPNPNPNPNPNPNPNPNPNPNPNPNPNPNPNPNPNPNPNPNPNPN

= 0.33333334

ITERATIONS: 1

OUTPUT

Exact SD: PPZZPZZNZZPZZNZZPZZNZZPZZNZZPZZNZZPZZNZZPZZNZZPZZNZZPZZNZZPZ

... as Float: 0.7777777777777778

Float: 0.7777777777777778

E. R. as Float: 0.7777777777777778

Exact Rat: 7%9

ITERATIONS: 2

OUTPUT

Exact SD: ZNZZPPNZZPZZPNPNPZZPNZZZZZNZPZNPNPZNPZNPPNPNZNPPZZZZZPZNZZPP

... as Float: -0.20987654320987653

Float: -0.2098765432098766
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E. R. as Float: -0.20987654320987653

Exact Rat: (-17)%81

ITERATIONS: 3

OUTPUT

Exact SD: PPPZPZPNPZNPZPNZPZZZPNZPZZNZPNPNPZPNPNPZNPNZZZPPNPZZZZNPZZZN

... as Float: 0.9119036732205457

Float: 0.9119036732205457

E. R. as Float: 0.9119036732205457

Exact Rat: 5983%6561

ITERATIONS: 4

OUTPUT

Exact SD: NNPNPZNZPNZZZNZPNPNPZNPZZNZNPZZNZZNZPZZZPNPNZZNZZNPZNZNZPZZZ

... as Float: -0.6631366184662474

Float: -0.6631366184662475

E. R. as Float: -0.6631366184662474

Exact Rat: (-28545857)%43046721

ITERATIONS: 5

OUTPUT

Exact SD: ZZPZZZZNZNPNPZZPZZPNZZPNNPNPNZPZZZZPZZPZZNPNZPZNPZZPNZZNPZZN

... as Float: 0.12049965049830123

Float: 0.120499650498301

E. R. as Float: 0.12049965049830123

Exact Rat: 223288285122943%1853020188851841

ITERATIONS: 10

OUTPUT

Exact SD: PPZZZZZZZNZPZPNZPNZZNPPNPZNZNPZNPNZZZPZZNZZZZZZNPZZZPZZZZZZP

... as Float: 0.7493017528354341

Float: 0.7493017528354383

E. R. as Float: 0.7493017528354341

Exact Rat: 279783166756109595520329154953886074722899063385902177740551732553042997330746919549126577046636631596857447826125531004552754696199733100644565478180903963045609294006883669707382128854626484441799922520206913440208511659717592406730766348908290438792803865580294776553932679091174750985548564347963457895727062471618250343997877794433515885234312660464501034239364160247273277123110561457678032965340804314088653106584085030272795940439991187397499259127202098801908525573383524124995583%373391848741020043532959754184866588225409776783734007750636931722079040617265251229993688938803977220468765065431475158108727054592160858581351336982809187314191748594262580938807019951956404285571818041046681288797402925517668012340617298396574731619152386723046235125934896058590588284654793540505936202376547807442730582144527058988756251452817793413352141920744623027518729185432862375737063985485319476416926263819972887006907013899256524297198527698749274196276811060702333710356481

ITERATIONS: 30

OUTPUT

Exact SD: PZZZZZPNPZPNPPNPNPZZZZZNZPNZZZZZZPNPZPNPNPNPZZNPZNZPZNZPZZZN

... as Float: 0.5062674954994535

Float: 0.5062674897488822

ITERATIONS: 40

OUTPUT

Exact SD: PPPPPPPPZNPNZPNZPNZZZNPZNPNPZZZPNPNZPPZZZZPNZZPNZZPZZZPZNPNP

... as Float: 0.9953955227211435

Float: 0.9953961772115644

ITERATIONS: 50

OUTPUT

Exact SD: PZPZNPZZZPNZPNPZZPNZPPZZZNPNPZNPNZPZZNPPNZZZPNNPZZZPPZPZNPNZ
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... as Float: 0.609957446954024

Float: 0.615483351212418

ITERATIONS: 60

OUTPUT

Exact SD: NNNZPNPZZNZNPZPNZPNZZPZZNZZNPZZPNPZPNZNZPZZNZNZZNZZPNZNZZZZN

... as Float: -0.8526437597407311

Float: -0.9469915748606237

ITERATIONS: 100

OUTPUT

Exact SD: NNNNNNNNNNPZPPZZZZZPZPZNZZNNPNPPNPZZNZPZZZNZZZZPNZNPZNPZZZZN

... as Float: -0.9983509279028324

Float: 0.9934928198528841

ITERATIONS: 300

OUTPUT

Exact SD: PPNPZZNPZZZPNZZZNZNZZZPNZNZPZZPZZZZZZZZPNZZZZZNZPNPNPNZPNZZZ

... as Float: 0.68370633246422

Float: 0.16185293297236963

ITERATIONS: 400

OUTPUT

Exact SD: ZZZNPZZPZZPZPNZZPNPZNZPPZNZPZPNPNPZZNPZZPZZZZPZZPNPZPNZZNPNP

... as Float: -2.67890201098297e-2

Float: -0.6706012733485962

ITERATIONS: 500

OUTPUT

Exact SD: NZZZZZNZZNPZNPZZZNNPNPZPZZZNPNZPNPZZNPPNZZPZNPZNPZZZZZZZZZNZ

... as Float: -0.5083667662137419

Float: 0.9909988369437114

ITERATIONS: 600

OUTPUT

Exact SD: NNZZZNPZZNZZZZZNPNZPZZPNPPNPNZZNPZZZPNZZZNZPNPZNPZNZZZZNPZNZ

... as Float: -0.7587994543102519

Float: 0.33218504745590244

-- 600 brings the computer almost down

-}

-- Demo program:

-- If f:II->II and uc is a mod of u.c. for f,

-- then testit uc f = f^n(p) where p and n are

-- given interactively.

testit :: UCII -> (II -> II) -> IO ()

testit = testitC . uCtoCSD
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testitd :: [SD] -> IO ()

testitd ds = testit (ucSDS ds) (foldr (.) id (map av ds))
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