SWANSEA UNIVERSITY

MENG COMPUTING

CSM14 - INDIVIDUAL PROJECT

Narrative and Reflective Account

Luke Hammond - 522196

Project supervisor: Dr N A Harman

May 07, 2012

Contents

1 Introduction 2
2 Project Development Process 3
2.1 Requirements e e e e e e 3
2.2 Methodology e e 3
2.3 Implementation e 4
24 Testing o e e e e e e e 4
3 Challenges 6
3.1 Working with the Existing Database Schema 6
3.2 Usingthe MVC Framework e 7
33 TheDiary Screen e e e e e e 8
3.4 Utilising the Google Maps APIwithMVC 9
3.5 JavaScript Development e e 10
3.6 Message Limit with WCF Framework 10
4 Technology Choices 12
4.1 DataLayer e e 12
4.2 ServicesLayer e 12
4.3 Presentation Layer e e 12
5 Reflection 13
5.1 Mistakes Made e 13

5.2 Evaluation e 13

1 INTRODUCTION

1 Introduction

The purpose of the Narrative and Reflective Account is to present a descriptive narrative of the process that was
carried out to develop the Glimpse Web system. The Glimpse Web system that was developed comprises of
three layers. These are the data layer, services layer and presentation layer. Each of these layers are discussed
throughout this document.

Following this introductory section of the document, the entire project development process is described.
Each of the important phases of the development process are discussed in relation to how they were completed.
The first part of this section describes the process I undertook to formulate the requirements and specification
items for the project. Following this, I discuss the development methodology I chose to use to help in the
creation of the application. The penultimate phase that is discussed is the implementation process, which gives
a discussion of exactly how I implemented the system. Finally, I outline the testing process that I used to
make sure that each part of the system worked correctly as I was developing it and that the system met its
specification.

The next section of this document describes a number of challenges that I faced while developing the
Glimpse Web system. Some of the challenges that I talk about in this section include how I was unable to use
the MVC framework properly at the start of the development phase of the project and how I overcome problems
faced while developing WCF services when the message returned is too big. Fortunately, each of the challenges
that I faced were overcome during the course of the project. Included with each challenge is a brief discussion
of how it was overcome.

I then go on to discuss the technology that I decided to choose to develop the system. I explain why I
chose the technologies that I did, along with why others were rejected.

The final section of this document reflects upon the entire project from start to finish. Any mistakes that
were made during this time are mentioned here. An important product of making a mistake should be that
lessons are learned from it. This was the case when I made mistakes and the lessons that I learned from doing
so are provided along side each mistake. I close of the document with an evaluation of how well I think the
project went.

2 PROJECT DEVELOPMENT PROCESS

2 Project Development Process

2.1 Requirements

At the very beginning of the life cycle of the project, one of the first major tasks was to develop a list of
requirements for the system that was going to be developed. This list would then define the scope of the project
by stating exactly what is to be produced by the end of the project. It was important that the set of requirements
were achievable, given the time scale of the project, but it was just as important to make sure that a substantial
amount of work would be required to complete the project.

The first stage of formulating a set of requirements saw me visit the client I would be developing the
system for. Myself and Neal Harman payed a visit to Nick Becket at the headquarters of RNA Plant, in Capel
Hendre, where Nick discussed his expectations for the project. Following this initial meeting, we arranged
another meeting where Nick would demonstrate the current application they are using and we could discuss the
project in more detail. During the second meeting we identified a list of essential features that must be present
in the final system.

After meeting with Nick on two previous occasions, I had a better understanding of the scope of the
project. From here, I created a list of formal requirements that covered each of the sections of the application in
detail. The list not only included functional requirements, but it included non-functional requirements as well.
I made sure that the list was complete, concise and each requirement was unambiguous. It was important that
the list of requirements had the three features mentioned as it meant that the client and myself had the same
understanding of what the system is required to do.

Once I had finished the list of requirements I was then able to move on to creating the specification doc-
ument. Each requirement had one or more specification item relating to it, which stated how that requirement
would be implemented.

2.2 Methodology

At the start of the project, it was necessary to choose methodology to follow to develop the system. In the
requirements document several methodologies were outlined along with their advantages and disadvantages.
After carefully analysing each of the methodologies, it was decided that the Scrum methodology would be the
most suitable for this project. The flexible nature of the Scrum methodology makes it perfect for this project.
Also, as working software will be produced frequently, it will allow the client to provide feedback stating
whether what is being produced is correct or if changes need to be made.

As the Scrum methodology has been designed with the assumption that a team will be present, it was
necessary for slight modifications to be made in how the process is followed. The three roles will essentially be
reduced to two. The role of product owner was assigned to Nick Beckett of RNA Plant but he was not be able
to add any major requirements to the product backlog once work had commenced, only slight modifications.
The roles of ScrumMaster and development team were undertaken by myself. The other part of the process
that needed modification was in relation to the meetings. As I was developing the software on my own, daily
scrum meetings were impossible as there were no other team members to inform about the progress that had
been. Instead of this I made personal notes of what I had done and what I was going to do. The sprint planning
meeting was modified in such a way that it involved me choosing what will be added during the next sprint.
On some occasions I contacted Nick Beckett to ask if he had a preference of what gets added next. At the end
of each sprint, there was no need for a sprint review meeting but I put back into the product backlog any items
that were not implemented during the sprint. The sprint retrospective meeting is held to discuss what went well
during the last sprint and what could be improved. Instead of a discussion, I just thought about what went well
and what could have been improved.

2.3 Implementation 2 PROJECT DEVELOPMENT PROCESS

The reason the waterfall model was not used for this project was because of its inflexible nature. Also,
the spiral model was not chosen because of the need for intensive risk analysis to be carried out throughout the
development. This seems unnecessary for this project and would have used up valuable development time.

2.3 Implementation

Once I had developed the requirements and specification documents it was clear that there were three main
parts to the system. These parts, or layers as I have been calling them, have been referred to throughout all of
the documents for this project. The three layers are:

e Data layer.
e Services layer.
e Presentation layer.

The first of the layers, listed above, that I implemented was the data layer. To do this I created an
ADO.NET Entity Data Model using the database schema that is currently being used with the desktop applica-
tion, Glimpse Desktop. Several problems were encountered during this process, all of which will be discussed
in the following section of this document. However, all of these problems were resolved and an entity data
model was created successfully.

The remaining two layers of the application were developed in parallel. It was clear that the application
had several different sections. For example there is an invoicing section, maintenance section and a mapping
section, to name a few. What I decided to do was to pick one of the sections at a time and develop the WCF
services related to that section. As I was developing the services for a section, I made sure I used the ‘“‘WCF
Test Client’, provided by Visual Studio, to make sure that what I written was correct and produced the desired
result. When I was sure that the services were correct, I moved on to developing the corresponding section in
the presentation layer. By developing in this manner, I made sure that any functionality exposed by the services
was not forgotten about accidentally. It also meant that I had something I could show to the client if they wanted
to see what I had done. This would not have been possible if I developed the entire services layer first and then
moved on to develop the presentation layer.

2.4 Testing

Throughout the development period of this project, testing played a vital role in making sure that what I was
writing was correct. The methods I used to test the code in the services layer and the presentation layer differed.
For the services layer I was able to take advantage of the "WCF Test Client’ to test the services I had written.
But a test client was not available to test the controllers in the presentation layer.

As previously mentioned, I utilised the “WCF Test Client’ to test my web services. The test client is
provided with Visual Studio is a GUI tool that enables a developer to test a service by inputting the required
parameters and submitting the request. When the service responds, the developer is presented with the response
returned. This tool made testing the WCF services I had written really simple. I was able to test each publicly
exposed method with a variety of different parameters and view the response to check that they functioned
correctly.

To test the presentation layer of the application, I mainly used manual testing. What I mean by this is, I
would interact with the application through the user interface and make sure the expected result was achieved.
I was able to do this because the services had been tested so I knew they were correct, all I had to do was make
sure that the presentation layer was communicating correctly with the services.

2.4 Testing 2 PROJECT DEVELOPMENT PROCESS

Once the system had been developed and was deemed to be complete, I undertook thorough acceptance
testing. Performing acceptance testing was required to make sure that the system that has been developed
matches up to the specification. This was the most important testing phase because, if the system did not meet
the specification then the project would not be classed as a success. To carry out the acceptance testing, I
developed an extensive test suite that was designed to cover to each specification item. Each test case in the test
suite has been given an identifier, a list of specification IDs stating which specification items the test covers,
a description, acceptance criterion and a PASS or FAIL outcome. Regarding the tests that failed, a description
was provided explaining why the test case failed. Out of all of the test cases, only 4 failed. The reasons behind
the failure of these tests can be seen in the Testing Document. However, the failing tests had no detrimental
impact on the overall system.

3 CHALLENGES

3 Challenges

3.1 Working with the Existing Database Schema

At the start of the implementation period for this project, it was necessary to decide how the application was
going to interact with the database. It did not take long to decide that the best way forward was to use the
Microsoft ADO.NET Entity Framework. Once it was decided how the application will communicate with the
database, the next phase was to create an ADO.NET Entity Data Model. During the creation of the data model
a problem was encountered that I was previously unaware of. The problem was that, the existing database
schema that is currently being used by the legacy application contained tables that do not have any primary
keys defined. The screenshot provided in Figure 1 shows the warnings that were produced which clearly state
that the tables do not have primary keys defined.

Error List
@ 0Errors | 14 56 Warnings | [i) 56 Messages

Description File

#i(57 |Error 6002: The table/view 'GlimpseTest.dbo.Addresses’ does not have a primary key defined. The key has been inferred and the definition was created as a read-only RMADataModel.edm:x
table/view.

4 58 Error 6002: The table/view 'GlimpseTest.dbo.Commonltems' does not have a primary key defined. The key has been inferred and the definition was created as a read-only RMNADataModel.edmx
table/view.

4 59 Error 6002: The table/view 'GlimpseTest.dbo.Customer_Locations' does not have a primary key defined. The key has been inferred and the definition was created as a read-only RMADataModel.edmx
tablefview.

4y 60 Error6002: The table/view 'GlimpseTest.dbo.Customer_Rates' does not have a primary key defined, The key has been inferred and the definition was created as a read-only RMADataMedel.edmzx
table/view.

4 61 Error 6002: The table/view 'GlimpseTest.dbo. Customers' does not have a primary key defined. The key has been inferred and the definition was created as a read-only RMNADataModel.edmx
tablefview.

4 62 Error 6002: The table/view 'GlimpseTest.dbo DBUpdates_Office’ does not have a primary key defined. The key has been inferred and the definition was created as a read-only RMADataModel.edmx
table/view.

Figure 1: Warnings produced when creating a data model from a SQL database where no primary keys exist.

When a primary key is not defined on a table, Entity Framework infers a primary key and doesn’t allow
update operations to be performed on rows contained within said table. Thus, making it a read only table. Using
read only tables for this application would not be possible as it must be possible to update records held in the
database as well as retrieving them. So, to overcome this problem, I had to work my way through all of the
tables and add primary keys where required.

After I had added the primary keys to the tables, I tried to update the data model from the database so that
it would include the primary keys. However, instead of removing the existing inferred primary keys and adding
the keys I had created, the update only added the keys I created to the keys that were inferred. By doing this,
it meant that the tables in the database did not match the tables in the Entity Framework data model. This was
expressed by the framework by displaying error messages similar to the one shown in Figure 2. The solution to
this problem was either going through the data model and removing the inferred primary keys by deselecting
the ‘Entity Key’ property, or deleting the entire data model and creating a new model from scratch. I settled on
the latter as it seemed the simpler way to do it and would result in no mismatches between the model and the
database.

Error 4 Error 3002: Problem in mapping fragments starting at line 2057:Potential runtime violation of ta-
ble JobsToDelete’s keys (JobsToDelete.JobNo): Columns (JobsToDelete.JobNo) are mapped to EntitySet Job-
sToDeletes’s properties (JobsToDeletes.JobNo) on the conceptual side but they do not form the EntitySet’s key
properties (JobsToDeletes.DriverNo, JobsToDeletes.JobNo).

Figure 2: Update model error.

The graphical representation of the data model that was produced is quite large as there is over 50 tables in
the database. In Figure 3, a section of the model has been included to provide an example of what gets produced
by the Entity Framework. It is clear from the image that the primary keys are now present on the tables.

3.2 Using the MVC Framework 3 CHALLENGES

"4 Driver Vehicle * £ DriverSkill &3 #: job S “*: JobsToCreateR... [% PDA) #: RepeatlobPatt.. £ StatusMap 5
= Properties = Properties = Properties =l Properties =l Properties = Properties =l Properties
¥ Drivero ¥ Drivertio # JobNo 5 JobNo ¥ PDAMNO 4 seriesID ¥ sagelndex
B vehicleNo P4 vehicleTypeNo A4 Userio “F post “= PhaneNo #A CustMo “f SageString
=) DT = Navigation Properties 1 DateBooked *F Email 7 DateBought = SiteNo ' SageOnHold
o Rtz Properiscs “# AbsoluteStart ! Fax 8 Make #f Orderho 4 GlimpseStatus
“# AbsoluteFinish ' PostAdd ' Model " Daily =l Mavigation Properties
' AbsoluteTotal T EmailAdd ' IDCode =T Weekly
7 ExpectedStart T Faxadd o Status 7 Monthly
1 ExpectedFinish *f ChosenAdd =l Mavigation Properties 7 WeeklyMultiple
™ ExpectedTravel " Receipt ' MonthlyMultiple
“H ExpectedBreak o ot 4 RangeType
7 ExpectedTotal = Mavigation Properties ' RangeEndDate
2% OrderNo z 25 RangeMNumlobs
4 DriverlobsOnP... | #; GPS_Archive % i: g':s:‘o ﬂ::‘m “#: Subcontractor %
iteMo ue
A
(= Properties = Properties ;zﬁﬁzeﬁintmment; §¥:ﬂ = Properties
ocStatus ar .
P Jabha “ JobMa X X P9 subMo
2 7 DriverMo ™ Fri
B DriverNo 3 GPSTime B swno B sar S Name
= Navigation Properties 7 VehicleMo R VehicleNo “*2 JobsToDelete 2] 42 PlantMismatch... 2| | #sun 4 AddMo
“# DriverNo 4 Phone
iz ' JabStatus . 2 = Navigation Properties
7 GPSCoordinate # actualstart = Properties =l Properties 7 Fax
}E‘Suppressed “ ActualFinish J‘jJnhNu HJuhNn = Email
] GPsArchiveld A sigStatus = Driverto = Mavigation Properties =) [ont.act
=l Navigation Properties A 5iglD T DelMsgsent 1 Mobile
A sianedstart 57 Received e

Figure 3: A section of the data model produced by Entity Framework.

Apart from the minor problems discussed above, using the Entity Framework to handle communication
between the application and the database has been straight forward. It has allowed me to use LINQ to issue
queries to the database which returns strongly typed objects that can be manipulated and saved back to the
database. This is in contrast to what I have done in past projects where it has been necessary to write the SQL
statements to run against the database and do not return strongly typed objects. By using the Entity Framework
and LINQ, I believe that it has enabled me to be more productive and to write much cleaner code.

3.2 Using the MVC Framework

During the creation of the requirements and specification documents, it was decided that the presentation layer
would be written using the ASP.NET MVC framework. Up until the start of the development phase of this
project I have had limited experience working with MVC. Due to my lack of experience with the framework I
ended up using it in a way that it was not intended. The functionality that I implemented at that time worked
correctly but I was putting too much input logic into the views. The input logic should reside within the
controllers and not the views. I was having to use a significant amount of JavaScript to get a view to display as
I required, depending on the model that was passed to it and the action from which the view was called.

After gaining more experience using the MVC framework and undertaking more research on the subject, 1
came to understand how to work with the framework properly. The aim of the framework is to help a developer
create applications where the different aspects of the application are kept separate and with loose coupling
between them. These aspects are input logic, business logic and Ul logic. The input logic should reside in the
controllers, the business logic belongs to the models and the UI logic belongs to the views. From this point
onwards, I put as much of the input logic as I could into the controllers and less into the views. In quite a few
cases the view contained no input logic. By doing this I was able to develop the application a lot quicker with
much cleaner code that was easier to understand.

Also, during the start of the implementation phase of the MVC application I decided not to create models.
The reason for this was that I had already created data contracts during the development of the WCF services
and these could be used to create strongly typed views. I also felt that creating models would be redundant as
they would be an exact copy of the data contracts. This decision turned out to be the wrong thing to do for
a number of reasons. As I got further into the development of the application I realised that I needed other
properties in the view model, that would be used by the view, which weren’t necessarily required in the data

3.3 The Diary Screen 3 CHALLENGES

contracts. Also, by using the data contracts instead of models, I was not able to take full advantage of the
validation annotations which are included with MVC and make validating user input extremely simple. For the
reasons mentioned, I continued developing the MVC application using models as I was able to add additional
properties that my views could use and I could validate user input with ease.

3.3 The Diary Screen

In the current desktop application being used by RNA Plant, Glimpse Desktop, there is a diary screen. This
screen provides a lot of functionality regarding the allocation of jobs and the details of jobs. It allows a user to
allocate a job to an operator or a subcontractor, unallocate a job and change the start time of a job dynamically
through the use of a drag and drop feature. A user of the application can use the diary screen to get an overview
of what jobs have been allocated, who they have been allocated to and what jobs have not yet been allocated
for a particular day. The screen is shown in Figure 4.

[BT
I = [~ > . - S . 1]
Diary /&= Maintenance Messages (; Mapping Invoicing w's| Reports P Settings ¢| Exit
| < previous day | |&ll Groups - | Tuesday 01 May 2012 |- | Today | | nextday> |

|4 am 8 am 12 pm 14 pm 8 pm 12 am

New Job || Mew Provisional || New Quote | | Refresh || Find Job

|Serv|ce |Start |Fi||is|| |Tota| |Customer |Site
EI'E Replace Faulty HDD 08:00 am 12:00 pm 4 Test Company Ltd The Pines

[km] Status: 13:59:07, Middleware link lost, check Middleware is running |7|

Figure 4: The diary screen that is currently being used in Glimpse Desktop.

At the start of the implementation period, one of the main sections of the application that was focused
upon was the diary section. Although it was not specified in the specification or requirements document, I
really wanted to provide a diary screen that was similar to the one being used in Glimpse Desktop. The main
features I wanted to include were as follows:

e To be able to drag and drop a job between operators and subcontractors.
e Unallocate a job by dragging and dropping it into an unallocated job list.
e To be able to drag and drop a job along a timeline to update the start and finish times for a job.

e To be able to get an overview of what jobs have been allocated, who they have been allocated to and what
jobs have not yet been allocated for a particular day just by looking at the screen.

I came to the conclusion that creating this component myself, from scratch, would not be possible. The
main reasons for this are that it would require a considerable amount of time, I have not had much experience
in developing custom components for the web and was outside the scope of this project. Following this reali-
sation, I decided to search the internet for software developing companies that develop web-based controls for
MVC. I managed to find a few companies that provided a scheduling component that were able to provide the
functionality I require. However, after creating an example project to test the components, the results were not

3.4 Utilising the Google Maps API with MVC 3 CHALLENGES

as good as expected. After finding out that the ready made components did not live up to my expectations, I
moved on to develop the other sections of the application but I continued to look for a scheduling component
at the same time. During this time I made sure that I devised an alternative solution for the diary section of the
application if I could not find a suitable component.

Once I had developed the rest of the application I came back to implementing the diary screen. Unfortu-
nately I did not manage to find an MVC scheduling control so I had to implement my alternative solution for
the diary screen functionality. The solution I devised was to have three grids; one for operator allocated jobs,
another for subcontractor allocated jobs and the final grid for unallocated jobs. It was not possible for me to
implement drag and drop functionality between the grids but, selecting a job in any of the grids would direct the
user to a screen showing the details of the job. Then from the job details screen the user is then able to update
who the job is allocated to as well as its start and finish times. I believe that the solution I developed provides
the features previously mentioned but without the ability to drag and drop jobs. The solution I developed is
shown in Figure 5.

Log Out

Diary - Previous Day Displaying Jobs For 12/04/2012 Next Day

Overview Operator Assigned Jobs

Create Job

e Status Customer Service Start | Finish | Allocated To Plant Type Allocated Plant site

T e @ Test Company Ltd = Generic Service 10:31 | 18:00 | Em tucker Generic Vehicle cvseTY Parc y Scarlets

Messages (=] Test Company Ltd Generic Service 10:31 18:00 Bob Jones Generic Vehicle PL10 ANY Parc y Scarlets

Test Company Ltd | Erect Stand x 08:00 12:00 | BOB BOB Generic Vehicle | CVS6TY Parc y Scarlets

3
212 |8
LR B

24 Penygroes Rd,
SA14 7LA

(=) Mr simon Walters Generic Service 08:00 16:00 BOB BOB Generic Vehicle PL10 ANY

Subcontractor Assigned Jobs

Customer Service Start | Finish | Allocated To Plant Type site

No records to display

Unallocated Jobs

Customer Service Start | Finish | Plant Type site

E2 Capel Hendre Industrial
Estate

BankClarity Man Exhibition Stand 10:00 14:00 bell

Figure 5: The diary screen that has been developed for Glimpse Web.

Even though I did not manage to find an adequate scheduling control for MVC, I did find a software devel-
oping company that can provide a scheduling control targeted at ASPNET AJAX. The name of the company
is Telerik and they have a component named ‘RadScheduler’. I also believe that, from researching on the in-
ternet, it will be possible to integrate this control into the MVC application. As the control is not targeted at
the MVC framework it is not possible for the control to interact with the database through actions within MVC
controllers. Interaction between the control and the database can be accomplished through the use of WCF web
services. The reason I decided against using the ‘RadScheduler’ was because it requires a licence fee and I
found it towards the end of the implementation period and therefore did not have the time.

3.4 Utilising the Google Maps API with MVC

One of the main sections of the desktop application, Glimpse Desktop, is that it allows you to track resources,
view job routes and address locations on a map. This functionality was also required in the web application that
I developed, Glimpse Web. The desktop application is utilising Microsoft MapPoint for the mapping section of
the application. It was not possible for me to use Microsoft MapPoint in the web application as the MapPoint
web service is deprecated and was retired from November 18, 2011. The solution to this was to use Google
Maps. I decided to use Google Maps for two main reasons. The first being that there is a lot of support online
regarding using the Google Maps API in a web application. Secondly, the majority of users will know how

3.5 JavaScript Development 3 CHALLENGES

to use Google Maps, with regards to navigation and zooming, as they will have already had some experience
using Google Maps.

To integrate Google Maps into my application I would have to use the Google Maps JavaScript API. This
proved to be quite challenging for me as I had never created an application that interacts with the Google Maps
JavaScript API and I had not had a considerable amount of experience using JavaScript. To overcome this
challenge I made a few test projects that mimicked the functionality that I required for the mapping section of
Glimpse Web. I also searched for tutorials on the internet where the Google Maps JavaScript API was being
used in an MVC application. After gaining more experience developing with the Google Maps JavaScript API,
I was then able to integrate it into Glimpse Web.

3.5 JavaScript Development

At the start of the implementation period of the project, my skill level of using JavaScript was quite low.
Mainly because I had never undertaken web development that required me to use JavaScript. This proved to
be a problem for me to begin with as I was not familiar with the JavaScript API. As this was the case I spent
a lot of my time searching through the API for what I needed. Further on in the development period, my
experience with JavaScript had significantly increased. Because of this, I was able to write JavaScript much
more efficiently without having to search through the API for what I needed.

Another challenge I faced when using JavaScript was how to debug JavaScript code. The code resides in
my views which are ‘.cshtml’ files and it is not possible to place a breakpoint for the JavaScript in these files.
To overcome this problem I undertook some research on the best way to debug JavaScript and found out that
Google Chrome provides developer tools, one of which allows you to place breakpoints on JavaScript code.
This allowed me to see the state of my variables to help me find the errors in my code.

3.6 Message Limit with WCF Framework

While I was developing a WCF web service to expose functionality relating to the diary/jobs section of the
application, I encountered a problem. The problem was that WCF sets a default maximum message size of
65,536 bytes. One of the methods exposed by the service I created returns all of the jobs in the database. While
testing this method, using the WCF Test Client, I was made aware that the message size returned by this method
exceeds the default maximum message size. The error message I was presented with is shown in Figure 6.

Failed to invoke the service. Possible causes: The service is offline or inaccessible; the client-side configuration does not match the proxy: the existing proxy is invalid. Refer to the
__ stack trace for more detail. You can try to recover by starting a new proxy, restoring to defautt configuration, or refreshing the service.
Q

Emor Detalls

The maximum message size quota for incoming messages (65536) has been exceeded. To increase the guota, use the MaxReceivedMessageSize property on the appropriate binding element. »
Server stack trace: E
at System ServiceModel Channels. Httpinput. ThrowMaxReceivedMessageSize Exceeded|)

at System ServiceModel Channels. HitpInput Get Message Buffer()

at System.ServiceModel Channels. HitpInput. Read BufferedMessage(Stream input Stream)

at System.ServiceModel Channels. HitpInput .ParselncomingMessage(Exceptiond request Exception)

at System.ServiceModel Channels. HitpChannel Factory. Hitp RequestChannel HitpChannel Request . Wait ForRephy(Time Span timeout)
at System ServiceModel Channels. ReguestChannel Request(Message message, TimeSpan timeout)

4 m 3

Close

Figure 6: The error raised when the maximum message size is exceeded.

To overcome this problem I had to edit the ‘maxReceivedMessageSize’ value in the configuration file for
the service. While using the *"WCF Test Client’ I was able to access the ‘SvcConfigEditor’ which allowed
me to edit the configuration file for the service. After increasing the ‘maxReceivedMessageSize’ value in

10

3.6 Message Limit with WCF Framework 3 CHALLENGES

the configuration file the method was able to return all of the jobs in the database without raising the error
previously mentioned.

I also had to edit the “Web.config’ file in my MVC application to ensure that the bindings for the ‘JobsSer-
vice’ were correct. I increased the ‘maxReceivedMessageSize’ value for the ‘JobsService’ to match the value I
used with the “WCF Test Client’.

11

4 TECHNOLOGY CHOICES

4 Technology Choices

4.1 Data Layer

The data layer of the application handles the communication between the services layer and the database. It was
decided that the best technology to use for this was the combination of Microsoft ADO.NET Entity Framework
and LINQ. The reason behind the decision was that it makes interacting with a data source extremely easy and
requires very minimal to zero plumbing code. By not having to write any plumbing code, this has made my
code a lot easier to read and understand. It also allowed me to concentrate mainly on the business logic of the
application and less so on the data access logic. Using LINQ has allowed me to issue queries to the database
and have strongly typed objects returned that can be manipulated and saved back to the database. The data
layer was the first layer of the application that was implemented.

The alternative to using the Microsoft ADO.NET Entity Framework and LINQ, to communicate with the
database, would require explicitly writing the SQL queries. This was decided against as it could potentially
make my code slightly harder to read and understand. As these problems are solved by Entity Framework it
seemed like the logical decision was to rule out using explicit SQL queries to communicate with the database.
Also, the SQL queries would not return strongly typed objects.

4.2 Services Layer

I decided to use the WCF framework to implement the services layer of the application. This decision was made
towards the start of the project as I was creating the requirements and specification documents. One of the main
reasons for choosing to use WCF was that a colleague highly recommended I look into it after informing them
about the system that I had to develop. They have had a significant amount of previous experience using the
framework and suggested that it would be suitable for the needs of the project.

The language choices available to me to write the WCF services were C# and Visual Basic. I felt that
choosing C# would be a better option because I have had more experience using the language and it is more
familiar to me. This has allowed me to concentrate on writing the application rather than also having to learn a
new programming language.

4.3 Presentation Layer

For the presentation layer of the application I chose to use ASPNET MVC 3. This was decided during the
creation of my specification document. There were several reasons for choosing to use the MVC framework to
develop the presentation layer. The main one being that the user interface logic is kept separate from the input
logic. This makes it possible to change one of the components without having to make any changes to the other.
Several other reasons for choosing to use MVC were that it makes validating user input and authenticating users
relatively simple to achieve. It also allows restrictions to be placed on certain functionality based on a users
rights level. The three previously mentioned items are three things that are required for this application.

The language choices available to me to write the controllers and models were C# and Visual Basic. 1 felt
that choosing C# would be a better option for the same reasons mentioned in the previous section about the
language choice for the services layer. That is, I have had more experience using the language and it is more
familiar to me. Also, by already having experience with the language I have been able to concentrate on writing
the code rather than having to learn a new programming language.

12

5 REFLECTION

5 Reflection

5.1 Mistakes Made

From the start of the project to the finish, I feel that no major mistakes were encountered. By major mistakes
I mean ones that were detrimental to the progression and overall success of the project. However, a few minor
mistakes were encountered along the way.

The first of these mistakes is with regards to the amount of work I committed to. Due to my lack of
experience in developing large applications, I completely underestimated the amount of work I could do within
the time that was available. To compensate for this, I have had to work on the project for longer hours than
I initially planned to which reduced the amount of time I could spend on other coursework and activities. By
doing this I was able to get to a position where the majority of the application was finished with plenty of time
to spare. The spare time allowed me to implement the remaining functionality of the application. I have learned
a lot from this mistake and in the future I will be sure that I set myself a more realistic target taking into account
the time frame available. If I were to undertake this project again I think I would the specification slightly.

I made two other mistakes at the beginning of the implementation phase of the MVC application. These
mistakes are mentioned in more detail in the Challenges section of this document. They are related to not using
the MVC framework in the way it was intended. The first mistake was that I was putting too much input logic
into the views. Secondly, I decided not to use WCF data contracts for strongly types views instead of MVC
models. It did not take long for me to realise where I was going wrong and these mistakes were corrected
not long after they were encountered. By encountering these mistakes early on in development, it prevented
me from potentially having to rewrite a lot of code. If I were to develop a web application utilising the MVC
framework in the future I certainly would not make these mistakes again. By not doing so, the progress of the
application would advance quicker than this application did at the start. If I were to undertake this project again,
I would make sure that used the MVC framework as it was intended and used MVC models even if I thought a
different solution may be more convenient.

5.2 Evaluation

Now that I have reached the end of the project I can look at what I have developed and determine whether the
project was a success or not. The success of the project is determined by whether it meets the requirements
that were set out at the beginning of the project. I believe that the project has been a success. There are only a
few requirements that were not satisfied but they do not affect the overall functionality of the application. The
requirements that were not met were originally classed as ‘nice to have’ items at the start of the project.

I believe that the technologies that I chose to use for this project were suitable for the system that was
developed. They allowed me to develop the application to a high standard with the functionality that was
required. At no point during the implementation of the system did I find myself thinking that I chose the wrong
programming language or framework.

Throughout the project life cycle I faced several challenges. These challenges have been mentioned in
this document and each of them were overcome. By overcoming these challenges, I have gained invaluable
experience in dealing with such situations. This experience has stood me in good stead for when I ever face a
similar situation in the future.

Most of all, this project has given me experience in developing a large scale application for a real-world
client. This is something that I had never done before. Having undertaken such a task, I feel more confident
that if I were to do something similar in the future I would be able to do it successfully and to a high standard.
I also feel that my project management skills have increased significantly. This will allow me to estimate the

13

5.2 Evaluation 5 REFLECTION

time required to complete a certain task more accurately and ultimately be able to work out how much can be
achieved in a given time frame. As well as what I have already mentioned, I have become a more proficient

programmer.

14

