
Milestone 3 : Testing Document

Matthew Pike, 523355@swansea.ac.uk
Supervisor: Dr Max Wilson

Swansea University
Computer Science Department

Contents

1 Introduction 1

2 Testing Approach 3
2.1 Overview . 3
2.2 Testing Methods . 4

2.2.1 Data Abstraction Layer (DAL) 5
2.2.2 Setup . 5
2.2.3 Browser . 6
2.2.4 Visualiser . 6

3 Acceptance Testing 7
3.1 Setup & Web Browser . 7
3.2 Visualiser . 14

Bibliography 21

i

1 Introduction

The purpose of this document is to detail the testing process applied to the project
and review the outcome of the procedure. This document will also validate that the
final version of the project fully fulfils the requirements set out in the Requirements
Document. This will be realised through acceptance testing.
This document should serve as a milestone in the project detailing the final version
and recording the project’s conformity to the requirements and specifications set
out in Milestone 1.

Term Definition

As with any technical project, there exists numerous technical abbreviations that
are used in place of long descriptors. We present a table below of the various
abbreviations used in this document, which should serve as an aid to the reader.

Term Definition

Visualiser The part of the system responsible for displaying the data
visualisation.

Document The web site or web based document being investigated in the
user study.

Experiment The study that is being conducted. Typically will contain a
User and a Conductor.

Data Source A device/software/location that is recorded by the Web
Browser.

Recorded Instance

Since a single experiment on a single user can contain
numerous conditions and tasks, we must distinguish what one
unique combination of these properties are called. We have
chosen ’Recorded Instance’ to represent this. A Recorded

Instance is an identifier for: Experiment -> User ->
Condition -> Task.

Stack A Stack is a part of the Visualiser UI that represents a single
Recorded Instance. A Stack is therefore a UI component.

WPF Windows Presentation Foundation - The visual framework
used to develop the user interface(s) in this project.

1

ORM Object Relational Mapping - a way of linking entries in a
database to a usable format in application code.

SQLCE SQL Compact Edition, the embedded database product we
use to store application data.

Personas

In addition to technical abbreviations, the project features unique individuals that
partake or feature somehow in the system. Below is a table documenting these
individuals and their role in the system. Again, this table is meant as an aid to the
reader.

Individual Role

Conductor
The person responsible for performing the user study. This is
typically a researcher who is aiming to prove a particular

hypothesis.

Researcher

The person who is responsible for gaining insight from the
user study. The Researcher and Conductor can typically be

the same person, however this is not always the case,
especially in a large research group. The Researcher is

therefore a member of the research team who is wishing to use
the data collected from the study.

User The person who is sitting the user study. Their responsibility
is to perform tasks provided to them by the conductor.

Client The person who will be receiving the finished software
project. In this case it is Pingar.

2

2 Testing Approach

In this section we document the testing strategy employed during the development of
the User Study System (USS). We will provide brief detail on the testing procedures
employed for different aspects of the project and comment on the success of our
approach.
For detailed analysis on the testing methodology, we refer you to the Methodology
and Requirements document in Milestone 1. This section provides an insight to the
applied testing that occurred during the development of the USS.

2.1 Overview

In this section we will provide a brief overview of the User Study System (USS) and
the subsections that form it. For a detailed account of the USS’s design, please refer
to the Design Document. The intention for this section is to provide an overview of
the components that form the USS and their interactions with one another in order
to see how certain strategies were developed for testing the USS.
The USS was designed as a combination of two major subsystems; Browser and the
Visualiser. However, the subsystem Browser, can be further broken into two separate
components; Setup and Web Browser. This relationship is shown in Figure 2.1.

Figure 2.1: The Major subsystems and components that form the USS.

We see from Figure 2.1 that each component in the overall system is linearly depend-
ant on the component before it. This gives the system a seemingly flat hierarchy.
However, in terms of actual implementation, additional components are required
in order for the system to operate correctly. As such, Figure 2.2 is an accurate
representation of the major subsystems that exist in the USS.

3

Figure 2.2: The components of the USS and their interaction/dependency with
one another.

The tests developed for the USS were developed and executed within Visual Studio
2010 Ultimate Edition. We used the standard unit testing library provided with
the IDE for unit tests. We also utilised the IDE for other forms of testing, such
as performance testing. These tests are included with the project source code. We
used the book “Professional application lifecycle management with Visual Studio
2010” by Gousset, M et al [GKKW10]. The book was of great assistance with the
practical implementation of testing and also when and where testing should occur
during the development of the system.

2.2 Testing Methods

In this section we will detail the testing method applied during the development
of the User Study System (USS). We describe both the approach taken and the
validation performed to ensure that the received results matched the expected value.
Our chosen testing methodology was complemented by our chosen development
methodology - Prototyping. In some ways Prototyping is a form of testing, since it
provides a test on the feasibility and relative success of a particular approach. This
was however a positive side effect of our chosen methodology and acts only as the
first wave of testing.
Our primary approach to testing was conducted through Unit Tests. Since the User
Study System (USS) is a large, complex project, comprising of numerous smaller
sub-systems, our testing was pre-dominantly local to each subsystem. To effectively
describe the testing procedure, we have divided the proceeding sections into detailing
the individual sub-systems, as they occur in the implementation of the USS itself.
For an understanding of how these components form the larger system, refer to
Figure 2.2 above.

4

2.2.1 Data Abstraction Layer (DAL)

The DAL is the component responsible for storing and retrieving all experiment
information stored in the USS database. In testing this component, our interest
was focussed primarily on assuring the consistency of the data stored in the system.
Other factors such as performance were not formally tested since the application
does not use the component intensively, rather it is used extensively by a number of
components.
To confirm the consistency of the data being stored and retrieved, we developed a
test project within the USS solution in Visual Studio. The project created a testing
client which instantiates the DAL. From here the client performs consistency checks
upon each of the entities exposed by the DAL. For each entity the consistency of
CRUD operations is assured. A typical procedure follows these steps:

1. Add an instance of an entity to the DAL.

a) Read that instance back from the DAL and assert it is equal to the
original.

2. Modify the inserted entity with an updated one.

a) Read that instance back from the DAL and assert it is equal to the
updated entity.

3. Remove the inserted entity from the DAL.

a) Attempt to read back the entity. Assert that the correct error message
is returned.

We performed this procedure on each of the entities that the DAL publicly exposes
to implementing classes.
To aid us in the testing of the DAL, we referred to the book Programming Entity
Framework by Julia Larman [Ler10]. As well as using the book in the develop-
ment of the DAL, the book proved to be an invaluable reference during the testing
stages. Chapter 24 in the book is especially helpful, detailing exactly how one should
approach testing a DAL. What was especially illuminating was Larman’s recom-
mendation of testing the individual entities directly, instead of attempting to test
the entire context at once. This simplified the approach to testing and ultimately
proved successful.

2.2.2 Setup

The Setup component is the part of the system where Conductors configure each
user study. There was little testing required for this section as it was primarily just
an interface to the data. The consistency of the data being stored is tested in the

5

DAL (documented above, subsection 2.2.1). We did investigate the possibility of
performing automated UI testing on this component and other UI components, but
ultimately decided against it due to time restrictions.

2.2.3 Browser

The Browser component and its associated sub-components (specifically the Col-
lectors component) were subject to rigorous testing procedures. There were 2 forms
of testing conducted:
Unit Tests These were used to ensure data consistency between the captured data

and the data stored on disk. Since the Collectors component is responsible for
collecting from a number of sources, we had to ensure that the synchronicity
of these operations were not interfering with one another.

Performance Testing Again due to the massive synchronicity of the operations
performed in this component, it was vital to ensure that the performance of
the component was acceptable and did not interfere with the participant’s web
browsing.

For each of these tests we used “Software Testing with Visual Studio 2010” by Jeff
Levinson [Lev11]. The book was especially useful for detailing performance testing
applications using virtual users under a variety of different scenarios, outlined in
chapters 6 & 7. These same chapters also outline the approach taken to automate
the unit tests developed, to test the consistency of the data being collected versus
the data being stored.

2.2.4 Visualiser

Similarly to the Setup component above, the Visualiser component deals mostly with
displaying stored data. As such, the consistency of the data being stored is tested
by the Browser component. However, additional tests were required to ensure that
all components were synchronised with one another. This was performed through
unit testing.

6

3 Acceptance Testing

In this section we aim to provide evidence of the system’s conformity to the spe-
cifications set out in Milestone 1. We present this evidence in tabular format.

3.1 Setup & Web Browser

In this section we provide the acceptance testing for the initial part of the project,
the web browser.

TEST_WB01

Asserts
Specification(s)

WBSPEC1, WBSPEC2, WBSPEC3, WBSPEC4,
WBSPEC5, WBSPEC20, WBSPEC21, WBSPEC22,
WBSPEC23

Description Tests whether the system allows conductors to specify
participant, experiment, condition and task details. The
system must also store the starting URL. The system
should persist CRUD operations across system resets.
The participant details should be stored in the system
database.

Acceptance
Criterion

• The system provides an intuitive user interface that
allows the conductor to enter the necessary details.

• The entered details should be validated. Validation
errors should be displayed.

• The system saves all valid input to the system
database.

• The stored data matches exactly to the entered
data.

7

Result Pass

TEST_WB02

Asserts
Specification(s)

WBSPEC6, WBSPEC7, WBSPEC8, WBSPEC9,
WBSPEC10

Description The system must be capable of retrieving stored details
(participants, experiments, conditions and tasks), and
display them to the conductor in an intuitive interface.
The conductor should be capable of selecting a distinct
value for each detail.

Acceptance
Criterion

• The system provides an intuitive user interface that
allows the conductor to view the available details.

• The displayed information matches the entered
details.

• The system allows for a single distinct value to be
selected (e.g. Only one participant can be selected
at a time)

• The system stores this unique combination in the
system database.

Result Pass

TEST_WB03

Asserts
Specification(s)

WBSPEC11, WBSPEC12, WBSPEC13, WBSPEC14,
WBSPEC15, WBSPEC31, WBSPEC32 WBSPEC34,
WBSPEC36, WBSPEC38, WBSPEC40

8

Description The system should support the acquisition of data from
the following sources:

• Microphone

• JavaScript based Web Events

• The mouse

• The web browser view (screenshots)

• The Emotiv EPOC brain scanning device

9

Acceptance
Criterion

• The system captures all mouse movement and clicks.

• The mouse data is stored in a correctly formed
XML format.

• The system captures all JavaScript based events.

• The web event data is stored in a correctly formed
XML format.

• The system captures all sound from the microphone.

• The captured audio is stored in a correctly formed
.WAV file format.

• The system captures all screenshots at the specified
interval.

• The captured screenshot is stored in a correctly
formed .BMP file format.

• The system captures all brain based events.

• The brain data is stored in a correctly formed XML
format.

• All captured information is stored in a standards
compliant file format.

• The recording process does not interfere with the
participant’s interaction with the web page they are
currently viewing.

Result Pass

TEST_WB04

Asserts
Specification(s)

WBSPEC16, WBSPEC17, WBSPEC18, WBSPEC19,

10

Description The system must allow the conductor to enable or disable
the following collection sources prior to beginning the
user study:

• Microphone

• JavaScript based Web Events

• The mouse

• The web browser view (screenshots)

• The Emotiv EPOC brain scanning device

Acceptance
Criterion

• The system provides a clear and intuitive interface
for enabling or disabling these features.

• The selection is stored to the system database and
is enforced during the user study.

• Collectors’ settings persist application restarts.

Result Pass

TEST_WB05

Asserts
Specification(s)

WBSPEC24, WBSPEC25

Description The setup utility must allow the conductor to configure
the Emotiv EPOC and the audio input device, using the
standard system utility for each.

11

Acceptance
Criterion

• The interface features a shortcut that loads the
Emotiv Control panel.

• The interface features a shortcut that loads the
windows input properties panel.

Result Pass

TEST_WB06

Asserts
Specification(s)

WBSPEC26, WBSPEC27, WBSPEC28, WBSPEC29,
WBSPEC30, WBSPEC35

Description The web browser must be familiar to a general user and
must feature all the necessary capabilities that are
expected from a modern web browser.

Acceptance
Criterion

• The Web Browser has a back button which
navigates to the previous page in history.

• The Web Browser has a forward button which
navigates to the next page in history.

• The Web Browser has a go button which navigates
to the specified page.

• The Web Browser has an address bar which is
modifiable.

• The Web Browser renders standard compliant web
pages correctly.

• The layout of the Web Browser interface emulates
Internet Explorer 6.

Result Pass

TEST_WB07

12

Asserts
Specification(s)

WBSPEC37, WBSPEC39

Description The Setup utility and web browser must be well
documented

Acceptance
Criterion

• The source code is commented correctly and is
supported by Doxygen documentation.

• A detailed and understandable user manual is
provided for non-technical users.

Result Pass

TEST_WB08

Asserts
Specification(s)

WBSPEC41, WBSPEC42

Description The Setup utility and web browser should be extensible,
allowing future collection sources and interface items to
be added.

Acceptance
Criterion

• The system provides public interface and hook
methods to allow additional collection sources to be
added.

• The system provides interface pointers to the web
browser’s UI.

• The system provides hook methods and interfaces
to add additional document types to the system.

Result Fail

13

Description The test is at fault here. The original specification makes
no reference to the document display being extensible, as
such this functionality has not been implemented. We
have revised this test in TEST_WB09.

TEST_WB09

Asserts
Specification(s)

WBSPEC41, WBSPEC42

Description The Setup utility and web browser should be extensible,
allowing future collection sources and interface items to
be added. (Revision of TEST_WB08)

Acceptance
Criterion

• The system provides public interface and hook
methods to allow additional collection sources to be
added.

• The system provides interface pointers to the web
browser’s UI.

Result Pass

3.2 Visualiser

In this section we provide the acceptance testing for the final part of the project,
the Visualiser.

TEST_VS01

Asserts
Specification(s)

VSSPEC1

Description The Visualiser must have a suitable hierarchy for the
conductor to select a user study recording based on the
study’s settings
(Experiment/Participant/Condition/Task)

14

Acceptance
Criterion

• The interface features a hierarchical display for each
recorded experiment in the system.

• The interface must allow for hierarchical navigation
of an experiment recording based on the features
(Experiment/Participant/Condition/Task)

• When selected, a recorded instance is loaded into
the Visualiser.

• The display transparently handles data
unavailability from the system database without
crashing the Visualiser.

Result Pass

TEST_VS02

Asserts
Specification(s)

VSSPEC2, VSSPEC3, VSSPEC14

Description The Visualiser interface should present individual
recordings in their own stack. The Visualiser should be
capable of containing many stacks. The interface should
be intuitive and allow for the comparison of multiple
studies.

Acceptance
Criterion

• A single recorded study is presented in a single
interface pane.

• The Visualiser interface allows for multiple panes to
be contained and manipulated within the interface.

• Each individual pane is resizeable.

• It is possible to close a single pane, and the
associated resources are freed appropriately.

15

Result Pass

TEST_VS03

Asserts
Specification(s)

VSSPEC4, VSSPEC5, VSSPEC6, VSSPEC7, VSSPEC8,
VSSPEC9, VSSPEC1, VSSPEC12, VSSPEC15

Description Each individual stack (display of a single recording) must
display the following interface features:

• Visualised emotion data from the Emotiv EPOC

• Visualised web event data

• Visualised audio data

• Visualised mouse trail data

• Screenshots displayed

Each of these interfaces must be in sync with the central
timeline.

16

Acceptance
Criterion

• The Visualiser presents the associated study
emotion data on a 2D graph.

• The Visualiser allows for multiple emotions to be
plotted on a single graph.

• The Visualiser plots selected Web Events on the 2D
graph according to their time of occurrence.

• The Visualiser presents the audio data using a
waveform visualisation.

• The Visualiser displays the full and partial web
page.

• The Visualiser displays a heatmap visualisation of
the participant’s mouse trail overlayed on the full
web page.

• The Visualiser displays a mouse trail visualisation
of the participant’s mouse trail overlayed on the full
web page.

• All visualisations and controls conform to the time
selected in the audio visualisation.

Result Pass

TEST_VS04

Asserts
Specification(s)

VSSPEC10, VSSPEC13

Description The Visualiser must allow the researcher to align all open
experiments by a common event in each of the recordings.
This point in time should be automatically navigated to
in each recording.

17

Acceptance
Criterion

• The Visualiser will display a list of common events.

• These events must occur in each of the open
experiments.

• The Visualiser will advance each open experiment
to the point in time where the selected event occurs.

Result Pass

TEST_VS05

Asserts
Specification(s)

VSSPEC16, VSSPEC18

Description The Visualiser must be well documented.

Acceptance
Criterion

• The source code is commented correctly and is
supported by Doxygen documentation.

• A detailed and understandable user manual is
provided for non-technical users.

Result Pass

TEST_VS06

Asserts
Specification(s)

VSSPEC17, VSSPEC20

Description The Visualiser must be responsive, even when multiple
recordings are being played simultaneously.

18

Acceptance
Criterion

• The Visualiser is responsive to the researcher’s
input.

• The Visualiser utilises all of the available CPU
resources available to it when performing
demanding or complex operations.

Result Pass

TEST_VS07

Asserts
Specification(s)

VSSPEC19

Description The Visualiser must be run on appropriate hardware.

Acceptance
Criterion

• The Visualiser runs on hardware that conforms to
the specified requirements, or greater.

Result FAIL

Description When demonstrating the Visualiser at a recent fayre, the
application was run on hardware that was below the
specified requirements. As such, this test fails, but really
the application benefits since it is efficient enough to run
on hardware below the originally specified requirements.
This is addressed in TEST_VS08.

TEST_VS08

Asserts
Specification(s)

VSSPEC19

Description The Visualiser must be run on appropriate hardware.
(Addresses test TEST_VS07)

19

Acceptance
Criterion

• The Visualiser runs on hardware that conforms to
the specified requirements, or greater. The test is
considered as passing if the application can run on
hardware that is below the recommended
requirement.

Result PASS

20

Bibliography

[GKKW10] M. Gousset, B. Keller, A. Krishnamoorthy, and M. Woodward. Profes-
sional application lifecycle management with Visual Studio 2010. Wrox,
2010.

[Ler10] J. Lerman. Programming Entity Framework: Building Data Centric
Apps with the ADO. NET Entity Framework. O’Reilly Media, Inc.,
2010.

[Lev11] J. Levinson. Software Testing with Visual Studio 2010. Addison-Wesley
Professional, 2011.

21

	Contents
	1 Introduction
	2 Testing Approach
	2.1 Overview
	2.2 Testing Methods
	2.2.1 Data Abstraction Layer (DAL)
	2.2.2 Setup
	2.2.3 Browser
	2.2.4 Visualiser

	3 Acceptance Testing
	3.1 Setup & Web Browser
	3.2 Visualiser

	Bibliography

