CS-M14 Industrial Project
Design Document

Matthew Lewis
523015Q@Qswansea.ac.uk

25th May 2012

Contents

1 Introduction 3
2 System Architecture 3
3 Data Access Objects 3
3.1 Sampleso 3
3.2 Submitters e e e 5
3.3 USers. e e e 6
3.4 Settings 6

4 Controllers 6
4.1 Submitters e 6
4.2 Submit 7
4.3 Confirmn e e e 7
4.4 Draw e e e e 7
4.5 Sample. e e e 7
4.6 USEIS. . . o v v e e e 7
4.7 Settings 7
4.8 Results. 7

5 Database Design 8
5.1 Table Design e 8
5.1.1 Samples In/Pending Tables L. 8

5.1.2 Submitters Table 9

5.1.3 Users Table e 9

5.1.4 Passwords Table 10

5.1.5 Settings Table 10

1 Introduction

This document contains a semi-formal design specification for the architecture used in both the
Customer Web Application and the Administration Web Application.

2 System Architecture

The architecture used for both the Customer and Administration Web applications is loosely based
on the Model-View-Controller (MVC) architecture. The MVC in architecture, in its simplest form,
is where the user interface or wiew of the application is developed separately from the actual
application logic.

Model The part of the application is where the main functions of the application are contained.
For example, if interaction with a database is involved, it is where the various transaction
functions are defined.

Controller The Controller is involved with processing the interaction with the users of the sys-
tem. After receiving an input from a user it uses the relevant model to perform certain
actions.

View The part of the architecture is the user interface of the application. The data displayed on
the view is 'pushed’ from the model to the view.

However, the applications utilise a modified MVC architecture by only using controllers and
views. Each web page of the system that is accessible on the web can be seen as a controller that
performs the program logic and the retrieval/updating of data. Each controller interacts with a
number of Data Access Objects that provide an abstract layer on top of the database by providing
the functions that will be performed on the database. The controller then displays the appropriate
view to the user.

3 Data Access Objects

For each the four basic groups of functionality I have produced a data access object that includes
all the low- level queries that interact with the database. These queries include reading from the
database, inserting new records, and deleting records. By using the data access objects I have
avoided the possibility of having to replicate the data access code in each of the controller files.
They provide an abstract interface to the controllers so that data can be retrieved, updated and
deleted without any attention to the specific queries being performed.

3.1 Samples

getUnsubmittedSampleByID Returns the information about an un-submitted sample using
the the specified sample 1D.

getSampleByCode Searches in the 'Samples In’ table for a sample with the specified sample
code and returns the information stored about it.

SampleDAO

+ getUnsubmittedSampleByID (samplelD: int)

+ getSampleByCode(sampleCode: String)

+ getSampleByRef(sampleRef: String)

+ getSubmittedSampleByID (samplelD: int)

+ getSampleCounts(swanCode: String, yearCode: String)

+ updateAnalysisData(sample: Array, data: Array)

+ countSamples(stage: int, swanCode: String, yearCode: String, fromDate: int, toDate: int)
+ deleteSample(samplelD: int)

+ saveSample(sample: Array)

+ checkIfUniqueSampleRef(sampleRef: String, swanCode: String)

+ getUnsubmittedSamples(swanCode: String, limit: int, offset: int, from: int, to: int)

+ getSubmittedSamples(swanCode: String, limit: int, offset: int, from: int, to: int)

+ getReceivedSamples(swanCode: String, limit: int, offset: int, from: int, to: int)

+ getInProgressSamples(swanCode: String, yearCode: String, limit: int, offset: int, from: int, to: int)
+ getCompletedSamples(swanCode: String, yearCode: String, limit: int, offset: int, from: int, to: int)
+ submitSample(sample: Array)

+ unsubmitSample(sample: Array)

+ bookInSample(sample: Array)

+ completeSample(sample: Array)

+ canModifySample(swanCode: String, samplelD: int)

+ getNextSampleCode(swanCode: String)

getSampleByRef Searches both the ’Samples In” and "Samples Pending’ tables for a sample with
the specified sample reference and returns the information stored about it.

getSubmittedSampleByID Returns the information about an already submitted sample using
the the specified sample ID.

updateAnalysisData Used to update the data about what machines or techniques have been
performed on a sample.

countSamples Counts how many samples have been submitted under a specific Swan code.
deleteSample Removes a sample record from the system.
saveSample Inserts a new sample into the database or updates an existing one.

checkIfUniqueSampleRef Used to check that a user has not already specified an existing sample
with the sample reference they are attempting to use.

getUnsubmittedSamples Returns a list of un-submitted samples which can be limited and offset
for paging purposes. It can also be filtered using from and to dates. It is also possible to
specify a Swan code so that the results are limited to that Swan code.

getSubmittedSamples Returns a list of submitted samples which can be limited and offset for
paging purposes. It can also be filtered using from and to dates. It is also possible to specify
a Swan code so that the results are limited to that Swan code.

getReceivedSamples Returns a list of received samples which can be limited and offset for paging
purposes. It can also be filtered using from and to dates. It is also possible to specify a Swan
code so that the results are limited to that Swan code.

getInProgressSamples Returns a list of 'In Progress’ samples which can be limited and offset
for paging purposes. It can also be filtered using from and to dates. It is also possible to
specify a Swan code so that the results are limited to that Swan code.

getCompletedSamples Returns a list of 'In Progress’ samples which can be limited and offset
for paging purposes. It can also be filtered using from and to dates. It is also possible to
specify a Swan code so that the results are limited to that Swan code.

submitSample Moves an existing sample from the ’Samples Pending’ table to the ’Samples In’
table and updates the current stage the sample is at.

unsubmitSample Moves an existing sample from the ’Samples In’ table back to the ’Samples
Pending’ table and updates the current stage the sample is at.

bookInSample Used to mark that the sample has been assigned a sample code by the lab and
update the stage the sample is at.

completeSample Used when the sample has been through all stages and needs to be marked as
completed.

canModifySample Checks the Swan code of the sample to ensure that the current user can make
modifications or view the sample.

getNextSampleCode When booking in samples they are given a unique sample code which is
assigned by the lab. The code is calculated sequentially. This function checks what the
previous sample code was and increments the value.

3.2 Submitters

SubmittersDAO

+ getSubmitterByCode(submitterCode: String)

+ getSubmitters(swanCode: String)

+ removeSubmitter(submitterCode : String)

+ updateSubmitter(submitterCode: String, name: String, phone: String, email: String)
+ createNewSubmitter(swanCode: String, submitterCode: String)

+ canModifySubmitter(swanCode: String, submitterCode: String)

getSubmitterByCode Retrieves the details about a specific submitter.

getSubmitters Retrieves a list of all submitters that have been created under a specific Swan
code.

removeSubmitter Removes a submitter from the system.

updateSubmitter Saves the changes to the submitters details into the database.
createNewSubmitter Inserts a new submitter with the specified Submitter code into the database.

canModifySubmitter Used to check whether the current user is able to modify or delete a specific
submitter by ensuring that the Swan code of the submitter matches the Swan code of the
current user.

3.3 Users

UsersDAO

+ getUsers()

+ getUserBySwanCode(swanCode: String)

+ authenticateUser(userID: String, password: String)

getUsers Returns a list of all the users currently in the database.
getUserBySwanCode Retrieves the details of a specific user by using their Swan code.

authenticateUser Checks a users Swan code and password against those stored in the database.

3.4 Settings

SettingsDAO
+ getSettings()
+ updateSetting(name: String, value: String)

getSettings Retrieves all the current settings from the database such as the current year code
and administrator password.

updateSetting Used to change the value of a specific setting. Used, for example, when changing
the current year code.

4 Controllers

Samples

The samples controller handles all the logic for retrieving and displaying the five different lists of
samples, one for each stage of processing. It performs functions such as the pagination of results,
controlling which list to display based on what tab is currently selected and filtering results by a
specified date range.

4.1 Submitters

The submitters controller is used to manage the list of submitters that are associated with a Swan
code. The controller handles operations such as the addition, editing and deletion of submitters.

4.2 Submit

The submit controller handles the submission of a new sample to the system. It checks that all
required fields are completed. It also allows users to save a sample and resume the submission
process at a later point in time.

4.3 Confirm

Before a sample is submitted the user must confirm the details of the sample. The confirm controller
is used to display the sample in a confirmation page from which the user can submit their sample
or return to make changes to it.

4.4 Draw

The draw controller is simply used to provide the user with the chemical structure drawing tool so
that they can draw their own structure for a specified sample. If a sample file already exists for
the sample, the controller will read its contents and output to the sketcher interface allowing for
modifications to be made to the structure.

4.5 Sample

The sample controller handles the display of sample data to the user. The controller first checks
that the user is allowed to view the sample. It also reads the contents of the structure file, if one
is provided, so that the structure can be drawn graphically using a JavaScript & HTML5 canvas
library.

With the administration application, the sample controller also handles the movement of sam-
ples through each stage such as booking in, marking as ’in progress’ and completing a sample.

4.6 Users

The users controller is used to display information about a specific user such as their details and
statistics about how many samples they have submitted.

4.7 Settings

The settings controller handles the changes to the settings of the system such as the administrator
password and the year code. p

4.8 Results

The results controller for the customer application is used to download the result file for a given
sample. The controller checks that the current user is allowed to download the result file first. If
they are, the controller looks for the file on the server and offers it for download to the user.

With the administration application the results controller is used to attach the result files to a
sample. The controller takes a list of files, creates a zip archive of them and moves the zip file into
the results directory from where it can be downloaded.

5 Database Design

5.1 Table Design

The design of the tables is restricted by the fact that the existing system is being used simultaneously
and interacting with the same data. Due to this, the structure of the tables had to remain the
same. However, it was possible to add additional fields to the tables so that the extra functionality
could be added in the new system.

Previously the system used the date fields, such as DateCreated or DatelnLab, to determine
which stage is sample is currently at. To simplify this process a new field SampleStage was added
to the samples table which is used to track the current stage of a sample.

5.1.1 Samples In/Pending Tables
Field Type Null Comments
Sample_id int(10) No Unique ID of the sample
Swan_code char(8) No Swan code of the submitter
Submitter_code char(10) No Submitter code of the submitter
Year_code char(4) No
Sample_code varchar(2) Yes Lab’s sample code
Sample_ref varchar(20) No Customers sample reference
DateCreated datetime Yes
DateCompleted datetime Yes
MolFormula varchar(50) Yes Molecular Formula
MolWeight varchar(20) Yes Molecular Weight
MeltPoint varchar(20) Yes Melting point of sample
Solvents varchar(50) Yes
Supervisor_email varchar(50) No
Submitter name varchar(50) No
Submitter_telephone varchar(50) No
Submitter_email varchar(50) No
NMSSC int(11) Yes Identifies what services are required
EICI int(11) Yes Identifies what services are required
ESI int(11) Yes Identifies what services are required
FAB int(11) Yes Identifies what services are required
MALDI int(11) Yes Identifies what services are required
AccMass int(11) Yes Identifies what services are required
GCMS int(11) Yes Identifies what services are required
LCMS int(11) Yes Identifies what services are required
COSHH char(10) Yes COSHH rating of sample
COSHHtext varchar(250) Yes
SpecialRequirements text Yes
DateSubmitted datetime Yes
DateReceived datetime Yes
DatelnLab datetime Yes
struct_file_recd int(11) Yes Structure file provided?

struct_filepath varchar(200) Yes Location of file
struct_filesize int(11) Yes Size of structure file
SampleStage int(11) No Current stage sample is at
LRy double Yes Machine/Technique data
HRy double Yes Machine/Technique data
LFy double Yes Machine/Technique data
HFy double Yes Machine/Technique data
LESy double Yes Machine/Technique data
HESy double Yes Machine/Technique data
LMy double Yes Machine/Technique data
HMy double Yes Machine/Technique data
GCy double Yes Machine/Technique data
HGCy double Yes Machine/Technique data
LCy double Yes Machine/Technique data
HLCy double Yes Machine/Technique data
NIL double Yes Machine/Technique data
OA double Yes Machine/Technique data
results int(1) Yes Results been attached to sample?
DateOut datetime Yes

5.1.2 Submitters Table
Field Type Null Comments
Submitter_code char(10) No Unique code to identify the submitter
Swan_code char(8) No Swan code of the submitter
Supervisor_email varchar(50) Yes
Submitter name varchar(50) Yes
Submitter_telephone varchar(50) Yes
Submitter_email varchar(50) Yes

5.1.3 Users Table
Field Type Null Comments
Swan_code varchar(8) No
Surname varchar(50) No
Title varchar(10) Yes
Initials varchar(7) Yes
First_name varchar(30) No
Institution varchar(36) No
department varchar(45) No
Address_line_1 varchar(40) Yes
Address_line_2 varchar(40) Yes
TownCity varchar(20) Yes
Postcode varchar(20) Yes
Telephone varchar(20) No

Fax varchar(20) Yes
email address varchar(50) No
5.1.4 Passwords Table
Field Type Null Comments
s_code varchar(8) No Swan code
p_sample varchar(40) No Password for the sample system
p-date varchar(30) No Date of last login
5.1.5 Settings Table
Field Type Null Comments
Name varchar(20) No Name of the setting
Value varchar(20) No Actual value of setting

10

