Comparison of Object-Oriented Programming
Languages

Timothy Clark (488232)
April 26, 2008

Contents

1 Introduction

2 What is object orientation
3 Comparison Methods

4 Languages
4.1 Visual Basic
4.2 Java ... e e
4.3 Python

5 Conclusion

1 Introduction

What is a good programming language is a common topic for debate, everyone
has their own opinion and favourite. In this report I am going to look at object
orientated programming and some example languages to try and find out what
makes these languages good, and when they are the right tool for the job.

Object Oriented languages came into existence in the 1960s but didn’t come
into common use until the early 1990s. The concept is to have a group of
abstract interacting objects compared to a more linear execution path. The
ease of code reuse, structuring and abstraction have made it a popular attribute
of modern languages.

Languages comparison can be complex due to the large number of variables
that languages can be compared by, and differing opinions on the priority of
these variables. I am going to look at some important fundamental attributes
of languages and there adherence to the idea of object orientation.

I have had to select a few programming languages to compare out of the thou-
sands that have been created. I decided to pick some of the common contenders
that are used in language debates, and ones that I have used so that I have a feel
for the language itself. I settled on comparing Visual Basic, Java and Python.

2 What is object orientation

Object Oriented programming is made up from several fundamental elements.
These are discussed in “The quarks of object-oriented development” [1] which
identifies the most discussed elements. 50% of all sources researched in this
paper talked about: Inheritance, Objects, Classes, Encapsulation, Methods,
Message Passing, Polymorphism and Abstraction.

Inheritance is the idea that an object can use and extend the attributes of its
parent object.

Objects are instances of classes, they contain data and methods to interact
with and process the data they contain.

A Class is a template of functions and placeholders for data that is used to
create multiple similar objects.

Encapsulation is the process of containing data within objects so it is only
visible and manipulateable through the classes methods.

Methods are functions that allow you to process, access and manipulate and
object or classes data.

Message Passing is the process of objects communicating data and requesting
actions of each other.

Polymorphism is the design process that allows objects to transparently do
different actions from the same method call and return data in the same way
but formed from a different process.

Abstraction is the process of hiding the complexity of a system within a more
general object.

These fundamental ideas allow for more efficient use of code and abstraction
to make programs smaller, easier to write and easier to understand. An object
oriented programming language can be compared against these properties to
check how well it conforms to the idea of object orientation.

3 Comparison Methods

To successfully compare languages I need to decide on how and what I'm going
to compare them by. As I am comparing object oriented languages, one of the
things that I will compare them by is how much they adhere to the common
properties of object orientated languages.

Programming languages are often compared by their running speed and how
they are executed. Methods of execution include ones fully compiled into ma-
chine code, languages that compile into interpreted byte code and languages
that are fully interpreted.|2]

Whether or not a programming language is compiled or interpreted does not
affect the speed, it also affects the ease and portability of the program. Programs
that are interpreted or part interpreted are less likely to need modifying to run
on different platforms, operating systems and architectures.

The strength of the typing of a programming language is often given as a
reason why a specific language is good or bad. Strongly typed languages impose
more restrictions on the programmer on how data types are intermixed, this
means that errors show up more at compile time than at run time, but this is
at the cost of a degree flexibility. Loosely typed programs also run slower as the
variables have to be cast when run rather than at compile time.

Programming languages are often made because there is not already a lan-
guage that does the job a programmer requires, so they make a new one to solve
a problem. Languages can be compared by the problem they were designed to
solve.[3]

People often say that a language is good or bad because of how many people
use it, this is often a good sign of what makes a particular language good for a
specific task.

4 Languages
4.1 Visual Basic

Visual Basic is a language for Microsoft’s Visual Studio development environ-
ment. The language can only be compiled with the development environment
meaning that the environment makes a difference to the program. The language
is very focused around making quick and easy user interfaces. The fact that the
user is encouraged to make the interface then write the code often leads to lots
of quick very buggy and badly designed programs.

Visual basic supports Inheritance, Objects, Classes, Encapsulation(through
access modifier), Methods, Message Passing(through method headers and events),
Polymorphism and Abstraction.[4]

Visual basic is half-compiled, it is compiled into p-code and then the p-code
is interpreted at run time. This means that it is faster to execute than a fully
interpreted program, but slower than a program that is compiled into a binary
file. Unfortunately the fact that it is interpreted does not mean that it runs on
more systems as Microsoft only supply the interpreter for its Windows operating
system.

The language can be compiled in both strong and loosely typed mode. This
allows for quick development of prototypes, but also careful development of
highly complex programs that need to run fast.[4]

This language provides a user interface design tool as part of its compiler,
it is also a lot like natural language in its syntax[4] there are very few popular
languages that have these advantages which makes this a good language for be-
ginners, making quick prototypes and user interfaces for the Windows operating
system.

4.2 Java

Java is an open source language owed by Sun. The language is designed with
syntax similar to C to make it easier for C programmers to switch to Java.

Visual basic supports Inheritance, Objects, Classes, Encapsulation, Meth-
ods, Message Passing(through method headers and events), Polymorphism and
Abstraction.[5]

Like Visual Basic, Java is also half-compiled, it is compiled into the Java
byte code then the byte code is interpreted at run time. Java is reasonably
platform independent as Sun provide the Virtual Machine interpreter for lots
of platforms, this allows files to be compiled once and distributed to different
architectures and operating systems.

Java is a strongly typed language[5] which means that all type conversions
bust be done explicitly, this means that casting errors are shown more at compile
time and less at run time, but this can limit the flexibility of the language.

This language comes with C like syntax, a large built in class library, is
strongly typed and is available for most common desktop platforms, this makes
it a good language to introduce people to programming as it forces them to
adopt good programming practices in a language that is powerful, useful and is
used widely.

4.3 Python

Python is an open source interpreted language owned by the Python Software
Foundation. The language was designed for “Rapid Application Development”
and with an emphasis on readability.[6].

Python supports Inheritance, Objects, Classes, some very basic Encapsula-
tion, Methods, Message Passing(through method headers and events), Polymor-
phism and Abstraction.[6]

Python is fully interpreted, however it does run a syntax check on the code
before it begins. The standard interpreter is available for most common plat-
forms and the source code and a fully comprehensive language specification are
available so it can be ported to more platforms easily.

The language is technically strongly typed but the type is not declared explic-
itly, its type is calculated by what it must be to work for the required functions.
This adds flexibility to the language but also allows run time errors if a variable
is defined as two types.

This language was designed to be easy to read and program, and comes with
a very big default library. It is available for all common platforms as it has an
open source compiler. It is commonly used as a scripting language or to connect
components together[6].

5 Conclusion

After looking into all three languages they all fit the object oriented specifica-
tion to varying degrees, python is probably the worst fit as it does not support
encapsulation very well. They are also interpreted to varying levels, Visual Ba-
sic and Java being compiled into a midway stage and the interpreted from that
and python being fully interpreted but has a syntax check before it is run.

The three languages are available on different ranges of platforms, Visual Ba-
sic is the most limited of the three only being available on Microsoft’s Windows
operating systems. Java is the next compatible because its virtual machine is
available for most common platforms and the source code is available. Python
is probably the most compatible as the standard interpreter is available for most
common platforms and has its source code available, and there are several other
open source python interpreters available which were created from the language
specification documents.

Both Visual Basic and Python both support strong and weak typing to some
extent, Visual Basic more then Python. Java only supporting strong typing
limits the speed and ease which programs can be written, but does force good
programming practices.

All three of these programming languages are designed and are good at differ-
ent tasks. Visual Basic is good for quick prototyping, user interface design and
integration with Microsoft products. Java is good for large structured programs
and for teaching good programming practice so that learning other languages
such as C are easy. Python is good as a quick prototyping, scripting and glue[6]
language as it is quick and easy to program in.

All three of these languages also have their own downfalls. Visual Basic
tends to encourage sloppy programming style and because of its development
environment and compiler only working on Windows it is the least platform
independent. Java is not as easy to write programs in as the other two languages
due to its structure and the fact it is only strongly typed. Python is the slowest
of the three languages and does not fully encourage strong types so can cause
more run time errors.

I would use all three of these languages, but only for solving the right problem.
I would use Visual Basic for rapid visual prototyping on Windows. I would
use Python for scripting, prototyping on a non Windows, and cross platform
prototyping and scripting. I would use Java for producing larger structured
programs on any platform.

References

[1] D. J. Armstrong, The quarks of object-oriented development. Communica-
tions of the ACM, Volume 49, Issue 2 (February 2006), Next-generation
cyber forensics, Pages: 123 - 128.

[2] David Bolton, Comparing Popular Programming Languages.
URL: “http://cplus.about.com/od/introductiontoprogramming/a/comparelangs.htm”
Date: 5th March 2008.

[3] Paul Graham, What Languages Fiz.
URL: “http://www.paulgraham.com/fix.html”
Date: 5th March 2008.

[4] Paul Vick, The Microsoft Visual Basic Language Specification (version 8.0).
URL: “http://msdn2.microsoft.com/en-gb/library/ms234437(VS.80).aspx”
Date: 22nd November 2007.

[6] James Gosling, Bill Joy, Guy Steele, Gilad Bracha, The Java Language
Specification (Third Edition,).
Source: The LIS(2nd Ed) or “http://java.sun.com/docs/books/jls/index.html”
(3rd Ed),
LIS Call Number: QA76.73.J38 ; GOS2,
2005.

[6] Guido van Rossum, What is Python? Executive Summary.
URL: “http://www.python.org/doc/essays/blurb/”
Date: 5th March 2008

