
13/12/2013 Science Intranet - Home

https://science.swansea.ac.uk/intranet/submission/coursework/1605/coversheet 1/1

College of Science

Coursework Submission

Module CS-354

Coursework Interim Document

Lecturer Mr. Christopher Whyley

Deadline 13 Dec 2013 11:00 AM

Student Number 644475

By submitting this work, you agree to the following statement:

"I am aware of the University policy on unfair practice and I certify
that this coursework is the result of my own independent work except
where otherwise stated, and that all other sources are explicitly
acknowledged" 2e2a0

This cover sheet should be securely stapled to the front of your work, and then submitted before the deadline to the
dropbox in 2nd Floor Student Reception, Faraday Building.

Generated at 08:21 08/10/13.

RCU File System: An Investigation into the
performance characteristics of Read Copy

Update in a File System
Interim Document

Callum Massey - 644475

December 13, 2013

Contents 2

Contents

1 Introduction 3

2 Background 3
2.1 Technical Details . 3

2.1.1 FUSE . 3
2.1.2 FAT File System . 4
2.1.3 URCU . 4

2.2 Further Background . 4
2.2.1 RCU . 4

3 Revised Project Plan 6
3.1 Progress . 6
3.2 Remaining Tasks . 6

3.2.1 Develop Testing Framework . 6
3.2.2 RCU Implementation . 6

4 Summary 6

1 Introduction 3

1 Introduction

In the initial document I attempted outline the background and motivation for this
project to create a file system that implements Read-Copy-Update as it’s internal locking
mechanism. In this document we discuss the progress made since then and discuss deeper
the technical design choices that have been made so far. We also discuss further the
background surrounding the project specifically in relation to the Read-Copy-Update
synchronization mechanism. In section 3 we discuss the remaining tasks that need to be
completed that are in the areas of code implementation and testing. In the final section
we attempt to draw conclusions and report on how the project is progressing in general.

2 Background

2.1 Technical Details

2.1.1 FUSE

Filesystem in User Space is what I am using as a basis of my FS to allow me to focus
on the complex implementation of RCU without having to worry about the kernel level
implementation of the file system. In order to implement FUSE you need at a minimum
the following FUSE operations;

1 stat ic int g e t a t t r (const char ∗path , struct s t a t ∗ s tbu f)
2
3 stat ic int open (const char ∗path , struct f u s e f i l e i n f o ∗ f i)
4
5 stat ic int read (const char ∗path , char ∗buf , s i z e t s i z e ,
6 o f f t o f f s e t , struct f u s e f i l e i n f o ∗ f i)
7
8 stat ic int wr i t e (const char ∗path , const char ∗buf , s i z e t s i z e ,
9 o f f t o f f s e t , struct f u s e f i l e i n f o ∗ f i)

These are at a minimum the functions I will need to implement, however as time
permits I intend to implement the following functions as time permits in approximate
order of relevance:

1 stat ic int mkdir (const char ∗path , mode t mode)
2
3 stat ic int rename (const char ∗ from , const char ∗ to)
4
5 stat ic int t runcate (const char ∗path , o f f t s i z e)
6
7 stat ic int s t a t f s (struct f u s e s t a t f s ∗ f s t)

Most of these functions will be simply passing their commands through to the underlying
file system library for example I do not expect to change getattr and statfs from their
standard implementation.

2.2 Further Background 4

2.1.2 FAT File System

For the underlying file system which I will be building the wrapper around I will be
using FAT, this is because FAT is the simplest of any viable file system for this project.
This stems from FAT being a very simple file system and while it is rather too simple for
serious modern use, it should allow for the purest comparison of performance without
other FS features masking the difference. As an example the implementation of the
write function for FAT in FUSE, without error checking, is as simple as;

1 stat ic int f u s e f a t w r i t e (const char ∗path , const char ∗buf , s i z e t s i z e ,
o f f t o f f s e t , struct f u s e f i l e i n f o ∗ f i)

2 {
3 int r e s ;
4 F i l e t ∗F;
5 Volume t ∗V;
6 fu s e f a t g e tvo lume (V) ;
7 F = (F i l e t ∗) f i−>fh ;
8 f a t l o c k (V) ;
9 f a t s e e k (F , o f f s e t , SEEK SET) ;

10 f a t w r i t e d a t a (V, F,&(F−>CurClus) , &(F−>CurOff) , buf , s i z e) ;
11 f a t u p d a t e f i l e (F) ;
12 f a t un l o ck (V) ;
13 return s i z e ;
14 }

To this end I will be basing my code upon fusefat mainly adding the RCU code.

2.1.3 URCU

As this code is being designed to run at a userspace level I will not be able to use
the kernel level RCU implementation, as such I will be using the Userspace Read Copy
Update (URCU) library for my RCU implementation. This has major advantages over
attempting to create my own implementation as it is a tried and tested implementation
of the read copy update library.

2.2 Further Background

2.2.1 RCU

The Read Copy Update algorithm allows you to have coherent access to data structures
even while they are undergoing updates by another process. It does this by, before
making any changes, copy the structure you intend to modify to a new location and
then perform the modifications to this struct while other processes can still access the
old copy until the write operation is finished, then an internal record of where each
structure maps to is updated to point at the new location. Once the read operations are
completed on the old copy the space is marked as empty.

This allows for a improved read performance under real world loads where multiple
processes are reading and writing the data at the same time. Especially under more read

2.2 Further Background 5

heavy loads as there is a very minor cost in the copying of the data though on modern
hardware this is negligible.

This performance increase mainly comes from the absolute lack of blocking for all
readers, which is implemented at a fundamental level within RCU.

To insert an element into an RCU structure, as shown below, you start with a global
pointer set to a NULL value, you then malloc some memory, initialise that memory,
and then use rcu assign pointer to assign the global pointer to the address of the tmp
pointer. You use this method to prevent the compiler changing the order of execution
and making the pointer return invalid values.

To remove an element from an RCU list you first use cds list del rcu to remove the
pointer to B so that no new access to that pointer can be made as it no longer exists.
Now you must wait for the current readers to finish, you can tell your code to wait until
all readers that could possibly have access to that memory address using synchronize rcu,
this functions waits until all readers that started before it was executed to finish before
continuing, then afterwards you can safely free this memory.

3 Revised Project Plan 6

3 Revised Project Plan

3.1 Progress

In the initial document it was planned that I would be much very along in my project
however this was a very optimistic plan as I have account significant issues with find
the available time to invest as well as the required amount of work being much higher
than expected. I have performed extensive research into the inner workings of the RCU
implementation as well as how, at a fundamental level, file systems are defined and
implemented. Another major source of difficulty has been understanding of advanced C
programming, especially regarding how block device access is handled. I have overcome
this through reading source code as well as literature sources.

3.2 Remaining Tasks

3.2.1 Develop Testing Framework

The most significant part of this project will be running performance tests and creating
those test cases. The usefulness of this file system will ultimately be determined by it’s
performance in real world scenarios, as such I intend to create several viable test to run
against it. To this end I intend to create a database benchmark that will involve running
a standard database engine on the file system and then performing various simultaneous
task on it. I will also create a benchmark test using dedicated benchmarking tools i.e.
sysbench.

3.2.2 RCU Implementation

The bulk of the coding work relates around how I am going to be handling writes and
what method I will use to handle tracking the current and previous data locations. I
plan on implementing this using, at first, an in memory structure containing original
and current file descriptors that I will use to lookup the real address of any anything I
need to access before doing so.

4 Summary

Learning the underlying workings of file systems and block device access took signifi-
cantly longer than I had anticipated. Hopefully I should not have to do any further
significant research during my project. The biggest challenge going forward will be
creating the test suite to benchmark the new file system.

