Traffic Shaping: an introduction

Tim Clark (eclipse)

November 12, 2009

What is Traffic Shaping?

- A networking feature
- Sometimes referred to as throttling
- Used to control data speeds
- Used to control data priorities

Who and Why

- ISP
 - To slow down heavy network users e.g. Virgin
 - To slow down torrents and large downloads
- Home users
 - Stop one person using all the internet bandwidth
 - Try and prevent upstream traffic shaping
- Network admins
 - To stop prioritise interactive traffic e.g. SSH
 - To stop high volume data choking other services e.g. torrents
 - QOS e.g. VoIP

Basics

- Selectively drops outbound packets
- Can't shape incoming traffic (like you can't stop incoming texts)
- Internet doesn't know how fast a connection is
- Internet is mostly TCP
- TCP auto detects speed
- We can mislead TCP on our speed (more on this in a moment)

TCP

- Starts sending slow
- Speeds up transmission till packets start going missing (not getting ACKed)
- Slows down till it gets reliable responses
- If we selectively drop packets (or thir ACKs) TCP will slow down its transmission rate
- Selectively drop packets going out to the local subnet on a router to control incoming speed of connections from the outside.
- "This is the equivalent of not reading half of your mail, and hoping that people will stop sending it to you. With the difference that it works for the Internet" - lirc.org

Queueing

- Data is shaped by queueing it
- Most basic is all data goes into one queue
- More complex is queues in queues (more on this later)
- Different types of queueing disciplines (qdiscs)
- Different qdiscs are useful for different things

pfifo_fast

- Puts all traffic into one of three queues
- Empties queues in order i.e. wont start emptying 2 until 1 is emptying

QDiscs

Selects queues by the QOS/TOS bit in the packet

Token Bucket Filter (TBF)

- A bucket if filled with tokens at a specific rate
- When the bucket is full tokens are no longer added
- When a packet arrives, a token is taken from the bucket and the packet allowed through

QDiscs

- If the bucket is empty the packet is dropped
- Best way to slow down your interface

Stochastic Fairness Queueing (SFQ)

Queues each packets for each connection separately

QDiscs

- Does a round robin on the queues when data slots are available
- Fair algorithm

Classfull QDiscs

- Classify packets and pass them to child qdiscs
- Filters get called by qdisc when packet arrives
- Qdisc then passes it to the approprite child
- When kernel can send packet, it asks the root qdisk that then queries its children
- The qdisks are then queried recursively
- Different types of classful qdisc

Complicated QDiscs

PRIO

- Clasifies packets like pfifo_fast
- Does not queue internally
- Passes packets to its child qdiscs

Complicated QDiscs

CBQ

- Very Complicated
- Passes packets to approprite childern based on filters
- Deques them based on weighted round robin
- Each queue has a weight, and a bandwidth which determines how often it can be dequeued
- Queus can be allowed to borrow a certain amount of unused bandwidth from other queues
- Requires you to know the upstream speed, otherwise it gets a little pointless

Hierarchical Token Bucket

- Works like a bit like CBQ
- Uses token buckets instead of weird timing stuff to decide which queue to use

QDiscs

- Allows bandwidth borrowing
- Easier to configure than CBQ

Filters

- Filters are used to classify packets in classful gdiscs
- Can filter on lots of packet propeties
 - source and desntination ip or subnet
 - source and destination port
 - QOS/TOS marks
- Can use marks that are set by iptables to do more complex matching

QDiscs

 Desisions can also be made depending on the routeing desision

tc is the command for confuguring traffic shapeing under linux

- Not particually intuative syntax
- GUIs and Configuration tools exsist to write the tc rules for you
- Linux Advanced Routing & Traffic Control(LARTC) is a good linux traffic shapeing and tc reference

The Internet

Slides Available at http://sucs.org/~eclipse LARTC: http://lartc.org/

Questions?

Any Questions?

